Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. + Vì \(|6-2x|\ge0\)\(\forall x\)
\(\Rightarrow\)\(|6-2x|-5\ge0-5\)\(\forall x\)
\(\Rightarrow\)B\(\ge\)-5 \(\forall x\)
Vậy GTNN của B= -5 \(\Leftrightarrow\)6-2x=0
\(\Leftrightarrow\)2x=6
\(\Leftrightarrow\)x=3
+ Vì -\(|6-2x|\le0\forall x\)
\(\Rightarrow\)\(|6-2x|-5\le0+5\forall x\)
\(\Rightarrow B\le5\forall x\)
Vậy GTLN của B= 5 \(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
c,+ Vì \(|x+1|\ge0\forall x\)
\(\Rightarrow\)\(3-|x+1|\ge3-0\forall x\)
\(\Rightarrow C\ge3\forall x\)
Vậy GTNN của C=3 \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
+ Vì \(-|x+1|\le0\forall x\)
\(\Rightarrow3-|x+1|\le3+0\forall x\)
\(\Rightarrow C\le3\forall x\)
Vậy GTLN của \(C=3\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Mình chỉ làm vậy thôi nhé!
\(A=\left|3,7-x\right|+2,5\ge2,5\)
\(MinA=2,5\Leftrightarrow3,7-x=0\Rightarrow x=3,7\)
\(\left|x+1,5\right|-4,5\ge-4,5\)
\(MinB=-4,5\Leftrightarrow x+1,5=0\Rightarrow x=-1,5\)
\(C=1,5-\left|x+1,1\right|\le1,5\)
\(MinC=1,5\Leftrightarrow x+1,1=0\Rightarrow x=-1,1\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
Ta có: \(A=2,5+\left|x-3\right|\ge2,5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-3\right|=0\)
\(\Leftrightarrow x-3=0\Rightarrow x=3\)
Vậy Min(A) = 2,5 khi x = 3
A = 2,5 + | x - 3 |
| x - 3 | ≥ 0 ∀ x => 2, 5 + | x - 3 | ≥ 2, 5
Dấu "=" xảy ra khi x = 3
=> MinA = 2,5 <=> x = 3
B = -2, 5 - | 3x - 1 |
-| 3x - 1 | ≤ 0 ∀ x => -2,5 - | 3x - 1 | ≤ -2, 5
Dấu "=" xảy ra khi x = 1/3
=> MaxB = -2, 5 <=> x = 1/3
C = -| x - 4 | + 2
-| x - 4 | ≤ 0 ∀ x => -| x - 4 | + 2 ≤ 2
Dấu "=" xảy ra khi x = 4
=> MaxC = 2 <=> x = 4
D = | 4, 2 - x | + 1
| 4, 2 - x | ≥ 0 ∀ x => | 4, 2 - x | + 1 ≥ 1
Dấu "=" xảy ra khi x = 4, 2
=> MinD = 1 <=> x = 4, 2
Bài 3:
B=(x-1)2+(y+2)2≥0
- minB=0 ⇔x=1 ; y=-2.
C=x2+\(\left|y-2\right|-5\)≥-5
- minC=-5 ⇔x=0 và y=2.
a) \(C=\left|2,4x\right|+\left|y-2,5\right|+6\ge6\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2,5\end{matrix}\right.\)
b) \(D=\left|-x+5\right|+\frac{1}{2}y^2\ge0\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=0\end{matrix}\right.\)