Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1−3+5−7+...+2001−2003+2005S=1−3+5−7+...+2001−2003+2005
=(1−3)+(5−7)+...+(2001−2003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)
=(−2).1002+2005=(−2).1002+2005
=−2004+2005=−2004+2005
=1
1993^1993+1997^1997=(1993^4)^498.1993+(1997^4)^499.1997
=(.....1)^498.1993+(....1)^499.1997
=(...1).1993+(....1).1997
=(...3)+(....7)
=(...0)
vggysqfyge32wfbhu334xft799nbr45445fk0pnr5gtrgđsyhmjlkmk;kmffed
Ta có: CSTC của 19991999 là 9 và CSTC của 19991995 cũng là 9
=> CSTC của 19991999-19991995 là 0
Ta có:CSTC của 20012001 là 1 và CSTC của 20011997 cũng là 1
=>CSTC của 20012001-200111997 là 0
Vậy CSTC của (19991999-19991995)(20012001-20011997) là 0.0=0
a ) \(19^{5^{2005}}=19^{....5}=...9\)
b ) \(234^{5^{6^7}}=234^{....5}=...4\)
c ) \(579^{6^{7^8}}=579^{....6}=...1\)
a,Vì 2001 chia 4 dư 1 nên 20012014 chia 4 dư 1
Đặt 20012014=4k+1
Ta có:20024k+1=(20024)ik.2002=(...............6)k.2002=.......................6.2002=.................................2
Vậy \(2002^{2001^{2014}}\) có tận cùng là 2
b,Cậu b tương tự câu a
Vì 81 chia 4 dư 1 nên \(81^{82^{83}}\) chia 4 dư 1
Đặt \(81^{82^{83}}\)=4k+1
.....................Bạn tự làm tiếp đi(tận cùng bằng 2)
c,Vì 2017 chia 4 dư 1 nên \(2017^{2018^{2019}}\) chia 4 dư 1
Đặt \(2017^{2018^{2019}}=4k+1\)
Ta có:20174k+1=(20174)k.2017=(............1)k.2017=...................1.2017=.........................7
Vậy....................
Nếu mik giải c có k cho mik k
nếu mik trả lời thì bn có k cho mik k