K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

a)21000=....1

=> chữ số tận cùng của 21000 là 1

b)32018=(32)1009=91009

Vì 1009 là số lẻ =>91009có chữ số tận cùng là 9

c)Tương tự bạn tự làm nhé

NHỚ K CHO MIK NHA

24 tháng 7 2018

Bài 2

a. S1= 5+52+53+.....+5100

    S1= 5(1+5)+53(1+5)+.....+599(1+5)

    S1= 5x6+53x6+.....+599x6

    S1= 6(5+53+.....+599) chia hết cho 6

b. S2= 2+22+23+24+25+.....+2100

    S2= 2(1+2+4+8+16)+.....+296(1+2+4+8+16)

    S2= 2x31+.....+296x31

    S2= 31(2+.....+296) chia hết cho 31

    

29 tháng 10 2020

DIT NHAU KO 

14 tháng 6 2016

Cô làm một câu, còn lại là tương tự nhé :))

Tìm chữ số tận cùng của \(7^{1995}\)

Ta thấy \(7^1\) tận cùng là 7, \(7^2\) tận cùng là 9, \(7^3\) tận cùng là 3, \(7^4\) tận cùng là 1, \(7^5\) lại có tận cùng là 7,...

Chứ như vậy ta thấy 1995=4.498+3 nên \(7^{1995}\) có tận cùng là 3.

17 tháng 9 2018

Lớp 7 hc giai thừa r ak

Đây là bài của học kì 2 ak bn

Mk học hết tập 1 mà chưa thấy bài nào là giai thừa hết lun ak

17 tháng 9 2018

Cô dạy nâng cao bn iu a! Giai thừa lp 6 mk đã hok r cơ. Trong chương trình nâng cao lp 6 có đấy. Trường mk là trường Chuyên mừ 

12 tháng 8 2016

Nếu một số phân tích ra thành tích các thừa số nguyên tố:a=pt11.pt22...ptkk
thì số các số là ước của số a sẽ là (p1+1)(p2+1)...(pk+1)

Dựa vào nhận xét này, ta suy ra để số a là nhỏ nhất ta suy ra các thừa số nguyên tố có trong phân tích của số a phải là các thừa số từ nhỏ nhất đến lớn nhất có thể

Nhận xét thứ hai là với số có 16 ước ta có các trường hợp sau:
16=1.16=2.8=4.4=2.2.4=2.2.2.2
Với trường hợp 16 = 1.16 thì khi đó số a có dạng là a=\(2^{15}\)=32768
Với trường hợp 16 = 2.8 thì số a khi đó số a có dạng là a=\(2^7.3^1\)=384
Với trường hợp 16 = 4.4 thì khi đó số a có dạng là a=\(2^3.3^3\)=216
Với trường hợp 16 = 2.2.4 thì khi đó số a có dạng là a=\(2^3.3^2.5^1\)=120
Với trường hợp 16 = 2.2.2.2 thì khi đó số a có dạng là a=\(2^1.3^1.5^1.7^1\)=210
Bằng lập luận toán học ta vẫn có thể suy ra số a là 120
Bài toán trở thành tìm chữ số tận cùng của \(92^{120}\)

Ta dễ dàng có được: \(92^{120}=92^{4.30}=\left(92^4\right)^{30}=\left(....6\right)^{30}=...6\)

Chúc bạn học tốt