Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
Vì \(n^2+2n+12\) là scp nên
\(n^2+2n+12=k^2\)
\(\Leftrightarrow\left(n^2+2n+1\right)+11=k^2\)
\(\Leftrightarrow k^2-\left(n+1\right)^2=11\)
\(\Leftrightarrow\left(k-n-1\right)\left(k+n+1\right)=11\)
Vì k-n-1<k+n+1 nên
\(\left(k-n-1\right)\left(k+n+1\right)=1\cdot11\)
\(\hept{\begin{cases}k-n-1=1\\k+n+1=11\end{cases}\Leftrightarrow\hept{\begin{cases}k-n=2\\k+n=10\end{cases}\Leftrightarrow}\hept{\begin{cases}k=6\\n=4\end{cases}}}\)
Vậy n=4
b) Tương tự