Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{x-1}{0-2}=\frac{1,2}{1,5}\)
\(\Leftrightarrow\frac{1-x}{2}=\frac{4}{5}\)
\(\Leftrightarrow5-5x=8\)
\(\Leftrightarrow x=-\frac{3}{5}\)
b) Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4-6+6}=\frac{16}{4}=4\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)
Bài 1:
c) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Leftrightarrow\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
d) \(x:y:z=3:5:2\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{5x-7y+5z}{15-35+10}=\frac{124}{-10}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{186}{5}\\y=-62\\z=-\frac{124}{5}\end{cases}}\)
Bai 1:
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{3a+b}{3c+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a}{c}=\frac{3a+b}{3c+d}\)
=> \(\frac{a}{3a+b}=\frac{c}{3c+d}\)(Đpcm)
Bài 2:
\(\frac{2}{x}=\frac{3}{y}\)
=> \(\frac{4}{x^2}=\frac{9}{y^2}=\frac{2.3}{x.y}=\frac{6}{96}=\frac{1}{16}\)
=> \(\hept{\begin{cases}x^2=64\\y^2=144\end{cases}}\)
=> \(\hept{\begin{cases}x=8\\y=12\end{cases}}\)
Bài 1: \(\frac{a}{b}=\frac{c}{d};\)\(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\Leftrightarrow\) \(\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{3a+b}{3c+d}\)
\(\Rightarrow\)\(\frac{a}{c}=\frac{3a+b}{3c+d}\)\(\Leftrightarrow\) \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\Rightarrow\)điều phải chứng minh
Bài 2 : tìm x,y biết \(\frac{2}{x}=\frac{3}{y}\)và xy=96
\(\Leftrightarrow\) \(\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{xy}{2\times3}=\frac{96}{6}=16\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{x}{2}=16\\\frac{y}{3}=16\end{cases}\Rightarrow\hept{\begin{cases}x=32\\y=48\end{cases}}}\)
vậy \(\hept{\begin{cases}x=32\\y=48\end{cases}}\)
Bài 2:
a. -(-a+c-d) - (c-a+d)
= a-c+d-c+a-d
= 2a-2c
b. -(a+b-c+d) + (a-b-c-d)
= -a-b+c-d+a-b-c-d
= -2b-2d
c. a(b-c-d) - a(b+c-d)
= a. [(b-c-d) - (b+c-d)]
= a.(b-c-d-b-c+d)
= a.(-2c)
=-2ac
Mk ko chắc là đúng đâu