K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2015

Bài 1 : Đặt a=36n;b=36n,ƯCLN(m;n)=1 với m,n thuộc Z

Ta có a+b=432 nên 36n+36m=432 => 36.(m+n)=432

m+n=432:36

m+n=12

=> ta xét từng số từ 1 ->11 .VD

m=1=>n=11=>ƯCLN =1(chọn)=>a=36,b=396

Nếu ƯCLN ko = 1 thì loại

 

 

a)Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự: A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

=>2q = 29(p – q) – 23 nhỏ nhất

=> p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

=> q = 3

b)126: a dư 25=>a khác 0 ; 1;126

=>126-25=101 chia hết cho a

Mà 101=1.101

=>a=1(L) hoặc a=101(TM)

Vậy a=101

17 tháng 3 2020

gọi số cần tìm là A :

chia cho 29 dư 5

A = 29 x p + 5 ( p \(\in\)N )

A = 31 x q + 28 ( q \(\in\)N )

nên :

29 x p + 5 = 31 x q + 28 

=> 29 x ( p - q ) = 2 x q + 23

ta có :

2 x q + 23 là số lẻ

=> 29 x ( p - q )  là số lẻ

vậy p - q = 1

theo giả thiết phải tìm A  nhỏ nhất :

=> 2q = 29 x ( p - q ) - 23 nhỏ nhất

=> q nhỏ nhất ( A = 31 x q + 28 )

=> p - q nhor nhất

suy ra : 2 x q = 29 x 1 - 23 = 6 

=> q = 6 : 2 = 3

vậy số cần tìm là : A = 31 x q + 28 =31 x 3 + 28 = 131

20 tháng 7 2016

Bài 1:

(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d 
Vậy 1111.a + 111.b + 11.c + d = 4321 
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10) 
+ Nếu a > 3 => vế trái > 4321 
Vậy a = 3 => 111.b + 11.c + d = 988 
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10) 
+ Nếu b > 8 => vế trái > 988 
Vậy b = 8 => 11.c + d = 100 

+ Nếu c < 9 => d > 11 (vô lý) 
Vậy c = 9; d = 1 
=> (abcd) = 3891

bài 2:

số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên 
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q ) 
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121 
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài

4 tháng 2 2016

số đo là 121 đi 100 %

21 tháng 2 2016

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự:  A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                    =>2q = 29(p – q) – 23 nhỏ nhất

                                    => p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

                        => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

21 tháng 2 2016

Số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên 
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q ) 
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121 
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài

9 tháng 4 2015

gọi số cần tìm là a, ta có

a :29 dư 5; a :31 dư 28

a=29p+5; a=31q+28

khi do ta co: 29p+5 = 31q+28 (*)

=> 29(p-q) = 2q+23

=> 28(p-q) + (p-q) - 1 = 2q +22

ve phai chia het cho 2 nen [(p-q)-1] cung chi het cho 2

ma do a la so tu nhien nho nhat nen [(p-q)-1] = 0 => p = q+1 thay vao (*)

ta duoc q = 3 => p = 4. Vay so a = 31*3+28 = 121 hay a = 4*29 + 5 = 121

9 tháng 4 2015

Cám ơn mấy bạn nha vì đã giup mình làm được bào này. Cám ơn các bạn nhiều lắm.

 

121

bạn kk mk nhé