K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2022

bài 2:

\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=9.\left(1-\dfrac{1}{100}\right)=9.\left(\dfrac{100}{100}-\dfrac{1}{100}\right)=\dfrac{891}{100}\)

bài 3:

\(=>\dfrac{x}{3}=\dfrac{5}{8}+\dfrac{1}{8}=\dfrac{8}{8}=1=\dfrac{3}{3}\)

\(=>x=3\)

17 tháng 4 2017

A = \(\dfrac{9}{1.2}\)+ \(\dfrac{9}{2.3}\)+\(\dfrac{9}{3.4}\)+......+\(\dfrac{99}{99.100}\)

A = 9( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.......+\(\dfrac{1}{99.100}\))

A = 9( 1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+........+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\))

A = 9 ( 1 - \(\dfrac{1}{100}\))

A = 9 . \(\dfrac{99}{100}\)

A = \(\dfrac{891}{100}\)

18 tháng 4 2017

\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\)

\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)

\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9\left(1-\dfrac{1}{100}\right)\)

\(=9\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)

\(=9\cdot\dfrac{99}{100}\)

\(=\dfrac{891}{100}\)

10 tháng 6 2017

1)Tính

a)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{9.10}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

b)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..............+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

2) tìm x

\(a\)) \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}\)\(=\dfrac{9}{5}\)

\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)

\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{7}{5}-\dfrac{7}{5}\)

\(\dfrac{4}{5}x=0\)

\(x=0:\dfrac{4}{5}\)

\(x=0\)

b)\(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)

\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)

\(\dfrac{2}{5}x=\dfrac{31}{10}\)

\(x=\dfrac{31}{10}:\dfrac{2}{5}\)

\(x=\dfrac{31}{4}\)

10 tháng 6 2017

1. Tính:

a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

= \(\dfrac{1}{1}-\dfrac{1}{10}\)

= \(\dfrac{10}{10}-\dfrac{1}{10}\)

= \(\dfrac{9}{10}\)

b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

= \(\dfrac{1}{1}-\dfrac{1}{100}\)

= \(\dfrac{100}{100}-\dfrac{1}{100}\)

= \(\dfrac{99}{100}\)

2. Tìm x, biết:

a. \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}\)

\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)

\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{7}{5}+\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{14}{5}\)

\(x=\dfrac{14}{5}:\dfrac{4}{5}\)

\(x=\dfrac{14}{5}.\dfrac{5}{4}\)

\(x=14.\dfrac{1}{4}\)

\(x=\dfrac{14}{4}\)

Vậy \(x=\dfrac{14}{4}\)

b. \(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)

\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)

\(\dfrac{2}{5}x=\dfrac{32}{20}+\dfrac{30}{20}\)

\(\dfrac{2}{5}x=\dfrac{62}{20}\)

\(\dfrac{2}{5}x=\dfrac{31}{10}\)

\(x=\dfrac{31}{10}:\dfrac{2}{5}\)

\(x=\dfrac{31}{10}.\dfrac{5}{2}\)

\(x=\dfrac{31}{2}.\dfrac{2}{2}\)

\(x=\dfrac{31}{2}.1\)

\(x=\dfrac{31}{2}\)

Vậy \(x=\dfrac{31}{2}\)

bài này mk tự làm ko sao chép trên mạnghihi

nếu thấy đúng thì tick đúng cho mk nhavui

5 tháng 3 2018

a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)

=\(\dfrac{1}{1}+0+0+...+0-\dfrac{1}{100}\)

=\(1-\dfrac{1}{100}\)

= \(\dfrac{99}{100}\)

6 tháng 3 2018

a) 11.2+12.3+13.4+....+199.10011.2+12.3+13.4+....+199.100

= 11−12+12−13+13−14+....+199−110011−12+12−13+13−14+....+199−1100

=11+0+0+...+0−110011+0+0+...+0−1100

=1−11001−1100

= 99100

17 tháng 4 2017

19 tháng 4 2017

Gợi ý: Sử dụng tính chất phân phối của phép nhân đối với phép cộng để nhóm thừa số chung ra ngoài.

Giải bài 76 trang 39 SGK Toán 6 Tập 2 | Giải toán lớp 6

13 tháng 4 2018

a. Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

b. Theo kết quả câu a,ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

1 tháng 5 2018

a. Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

b. Theo kết quả câu a,ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

4 tháng 4 2017

\(C=\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.\left(-2^2\right)\\ C=\dfrac{6}{7}+\dfrac{5}{8}.\dfrac{1}{5}-\dfrac{3}{16}.\left(-4\right)\\ C=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{16}.\left(-4\right)\\ C=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{16}.\dfrac{-4}{1}\\ C=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{-3}{4}\\ C=\dfrac{48}{56}+\dfrac{7}{56}-\dfrac{-42}{56}\\ C=\dfrac{97}{56}\)

4 tháng 4 2017

\(A=15.\left(\dfrac{3}{5}-\dfrac{2}{3}\right)+1\)

\(A=15.\dfrac{-1}{15}+1\)

\(A=-1+1\)

\(A=0\)

6 tháng 4 2017

\(A=15.\left(\dfrac{3}{5}-\dfrac{2}{3}\right)+1\\ A=15.\left(\dfrac{9}{15}-\dfrac{10}{15}\right)+1\\ A=15.\dfrac{-1}{15}+1\\ A=-1+1\\ A=0\)

6 tháng 4 2017

\(C=\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.\dfrac{9}{11}+1\dfrac{5}{7}\\ C=\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{9}.\dfrac{9}{11}+\dfrac{12}{7}\\ C=\dfrac{-5}{7}.\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{12}{7}\\ C=\dfrac{-5}{7}.1+\dfrac{12}{7}\\ C=\dfrac{-5}{7}+\dfrac{12}{7}\\ C=1\)

19 tháng 3 2024

A = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}.\)\(\dfrac{24}{25}\)...\(\dfrac{9800}{9801}\)

A = \(\dfrac{1.3}{2.2}\).\(\dfrac{2.4}{3.3}\).\(\dfrac{3.5}{4.4}\)...\(\dfrac{98.100}{99.99}\)

A = \(\dfrac{1}{2}.\dfrac{100}{99}\)

A = \(\dfrac{50}{99}\) 

B = \(\dfrac{1.2+2.3+3.4+...+98.99}{98.99.100}\)

Đặt tử số là C Thì 

C = 1.2 + 2.3 + 3.4 +...+ 98.99

C = \(\dfrac{1}{3}\).(1.2.3 + 2.3.3 + 3.4.3 + ...+ 98.99.3)

C = \(\dfrac{1}{3}\).[1.2.3 + 2.3.(4-1) + 3.4.(5-2) +...+ 98.99.(100-97)]

C = \(\dfrac{1}{3}\).[1.2.3 -1.2.3+2.3.4- 2.3.4 + 2.4.5 - .... - 97.98.99 + 98.99.100]

C = \(\dfrac{1}{3}\).98.99.100

B = \(\dfrac{\dfrac{1}{3}.98.99.100}{98.99.100}\) 

B = \(\dfrac{1}{3}\) = \(\dfrac{33}{99}\) < \(\dfrac{50}{99}\) = A

Vậy B < A