K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

1. a) 762 + 242 + 48.76 = 242 + 2.24.76 + 762 = (24 + 76)2 = 1002 = 10000

    b) 202.198 - 203.197 = (200 + 2)(200 - 2) - (200 + 3)(200 - 3) = (2002 - 22) - (2002 - 32) = 9 - 4 = 5

2 . x2 - 4x + 5 = x2 - 2.x.2 + 22 + 1 = (x - 2)2 + 1 . 

(x - 2)2\(\ge0\)nên GTNN của x2 - 4x + 5 là : 0 + 1 = 1 tại : (x - 2)= 0 <=> x = 2

10 tháng 9 2016

\(76^2+24^2+48\cdot76\)

\(=76^2+48+48\cdot76\)

\(=48\left(5776+76\right)\)

\(=48\cdot5852\)

\(=280896\)

18 tháng 7 2017

\(D=-x^2-4x\)

\(=-\left(x^2+4x\right)\)

\(=-\left(x^2+2.x.2+2^2-4\right)\)

\(=-\left[\left(x+2\right)^2-4\right]\)

\(=-\left(x+2\right)^2+4\)

\(-\left(x+2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+2\right)^2+4\le4\forall x\)

\(\Rightarrow D\le4\forall Dx\)

Dấu ''=" xảy ra khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)

Vậy \(MAX_D=4\) khi \(x=-2.\)

18 tháng 7 2017

Thank You !^^

a: \(\Leftrightarrow9x^2-12x+4-6x^2-16x=0\)

\(\Leftrightarrow3x^2-28x+4=0\)

\(\text{Δ}=\left(-28\right)^2-4\cdot3\cdot4=736>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{28-4\sqrt{46}}{6}=\dfrac{14-2\sqrt{46}}{3}\\x_2=\dfrac{14+2\sqrt{46}}{3}\end{matrix}\right.\)

b: \(\Leftrightarrow16x^2+24x+9-16x^2+25=12\)

=>24x+34=12

=>24x=-22

hay x=-11/12

b: Ta có: \(B=-2x^2+4x+1\)

\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)

\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)

\(=-2\left(x-1\right)^2+3\le3\forall x\)

Dấu '=' xảy ra khi x=1

10 tháng 9 2016

a) = - (x^2 -2xy +y^2)+7(x-y)

= -(x-y)7( x-y)

b) = -((x^2 -2xy +y^2)- 16)

= -((x-y)^2-4^2)

=-(x-y+4 )(x-y-4)

c) =3x^2+3x+2x +2

=(x+1)(3x+2)

d) làm tương tự câu c)

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

`#3107.101107`

`A = -x^2 + 4x - 8`

`= -(x^2 - 4x + 8)`

`= - [ (x^2 - 2*x*2 + 2^2) + 4]`

`= - [ (x - 2)^2 + 4]`

`= -(x-2)^2 - 4`

Vì `-(x - 2)^2 \le 0` `AA` `x`

`=> -(x - 2)^2 - 4 \ge 0` `AA` `x`

Vậy, GTLN của A là `-4` khi `(x - 2)^2 = 0`

`<=> x - 2 = 0`

`<=> x = 2.`

1 tháng 10 2023

A = -x² + 4x - 8 

= -(x² - 4x + 8)

= -(x² - 4x + 4 + 4)

= -[(x - 2)² + 4]

= -(x - 2)² - 4

Do (x - 2)² ≥ 0 với mọi x R

⇒ -(x - 2)² ≤ 0 với mọi x ∈ R

⇒ -(x - 2)² - 4 ≤ -4 với mọi x ∈ R

Vậy GTLN của A là -4 khi x = 2