\(\dfrac{a}{b} = \dfrac{c}{d}\) hãy suy ra

a,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Mấy bài dễ tự làm nhé:D

1)

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)

Ta có điều phải chứng minh

\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)

Ta có điều phải chứng minh

17 tháng 11 2018

a) Ta có:

+) a/2=b/3

=>a=2b/3

+) b/5=c/4

=>c=4b/5

Lại có:

a-b+c=49

=> 2b/3 -b + 4b/5 =49

=> 7b/15==49

=> b= 105

Khi đó:

+) a=2b/3=2.105/3=70

+)c=4b/5=4.105/5=84

Vậy a=70; b=105; c=84...

chúc bạn học tốthihi

19 tháng 11 2018

thank!

7 tháng 8 2019

a) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)

7 tháng 8 2019

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{\left(bk\right)^2+b^2}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\) (1)

Tương tự, ta cũng có \(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(k+1\right)^2}{k^2+1}\) (2)

Từ (1), (2) suy ra \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)

22 tháng 7 2017

\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)

\(\Rightarrow x\left(1-2y\right)=40\)

\(\Rightarrow x;1-2y\in U\left(40\right)\)

\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)

Mà 1-2y lẻ nên:

\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)

\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)

b tương tự.

c) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)

d tương tự

19 tháng 6 2019

cho hỏi chút

\(\frac{a}{b}=\frac{c}{d}\)

trong đó

\(a=c\) hay \(a\ne c\)

\(b=d\) hay \(b\ne d\)

( bài có thiếu điều kiện ko vậy )

1 tháng 1 2018

Tên của mày là Tôm

1 tháng 1 2018

bài này cũng khó đấy!

24 tháng 7 2017

\(\dfrac{72-x}{7}=\dfrac{x-4}{9}\)

\(\Rightarrow9\left(72-x\right)=7\left(x-4\right)\)

\(\Rightarrow648-9x=2x-28\)

\(\Rightarrow11x-28=648\)

\(\Rightarrow11x=676\Rightarrow x=\dfrac{676}{11}\)

\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)

\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)

\(\Rightarrow259-7x=3x+39\)

\(\Rightarrow10x+39=259\)

\(\Rightarrow10x=220\Rightarrow x=22\)

\(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)

\(\Rightarrow\left(x+4\right)^2=100\)

\(\Rightarrow\left(x+4\right)^2=\pm10^2\)

\(\Rightarrow\left[{}\begin{matrix}x+4=10\Rightarrow x=6\\x+4=-10\Rightarrow x=-14\end{matrix}\right.\)

\(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)

\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\)

\(\Rightarrow x\left(x+3\right)-1\left(x+3\right)=x\left(x+2\right)-2\left(x+2\right)\)

\(\Rightarrow x^2+3x-x-3=x^2+2x-2x-4\)

\(\Rightarrow x^2+2x-3=x^2-4\)

\(\Rightarrow2x-3=-4\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=-\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

a)

ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)

Vậy TXĐ của $x$ là \(D= [0;+\infty)\)

b)

ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)

Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)

c)

ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)

Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

d)

ĐK:

\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)

Vậy TXĐ \(D=\mathbb{R}\)

e)

ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)

f)

ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)

28 tháng 1 2020

Bài 1:

a) Ta có:

\(\frac{x}{3}=\frac{y}{7}\)\(x.y=84.\)

Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)

Lại có: \(x.y=84\)

\(\Rightarrow3k.7k=84\)

\(\Rightarrow21.k^2=84\)

\(\Rightarrow k^2=84:21\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2.\)

+ TH1: \(k=2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)

+ TH2: \(k=-2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)

Bài 2:

a) Ta có:

29 tháng 1 2020

Tham khảo nha:

Biến đổi biểu thức tương đương : (x^2 - 1) /2 =y^2

Ta có: vì x,y là số nguyên dương nên

+) x>y và x phải là số lẽ.

Từ đó đặt x=2k+1 (k nguyên dương);

Biểu thức tương đương 2*k*(k+1)=y^2 (*);

Để ý rằng:

Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : {1,y, y^2} ;

từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3.

Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

Chúc bạn học có hiệu quả!