Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
\(=5\cdot2\sqrt{2}-4\cdot3\sqrt{3}-2\cdot5\sqrt{3}+6\sqrt{3}\)
\(=10\sqrt{2}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)
\(=10\sqrt{2}-16\sqrt{3}\)
b: \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|1-\sqrt{6}\right|\)
\(=3-\sqrt{6}+\sqrt{6}-1\)
=3-1=2
c: \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)
\(=\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\dfrac{1\left(4-\sqrt{15}\right)}{16-15}\)
\(=\sqrt{15}+4-\sqrt{15}=4\)
d: \(\dfrac{2\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)
\(=\dfrac{\sqrt{3-\sqrt{5}}\cdot\sqrt{2}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}\)
\(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\dfrac{\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)
\(=3+\sqrt{5}-\dfrac{\sqrt{5}}{2}=3+\dfrac{\sqrt{5}}{2}\)
Bài 2:
Vẽ đồ thị:
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x-4=-3x+3\)
=>\(\dfrac{1}{2}x+3x=3+4\)
=>\(\dfrac{7}{2}x=7\)
=>x=2
Thay x=2 vào y=-3x+3, ta được:
\(y=-3\cdot2+3=-3\)
Vậy: (d1) cắt (d2) tại A(2;-3)
Bài 1:
a: \(\sqrt{27}+\dfrac{1}{2}\sqrt{48}-\sqrt{108}\)
\(=3\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-6\sqrt{3}\)
\(=-3\sqrt{3}+2\sqrt{3}=-\sqrt{3}\)
b: \(\left(\sqrt{14}-\sqrt{10}\right)\cdot\sqrt{6+\sqrt{35}}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{2}\cdot\sqrt{6+\sqrt{35}}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{12+2\sqrt{35}}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)=7-5=2\)
c: \(\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}-\dfrac{2}{\sqrt{3}-1}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\dfrac{2\left(\sqrt{3}+1\right)}{3-1}\)
\(=\sqrt{3}-\sqrt{3}-1=-1\)
Bài 2:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
\(A=\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-5+\sqrt{x}-1+2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: A=2
=>\(\sqrt{x}=2\left(\sqrt{x}-1\right)\)
=>\(2\sqrt{x}-2=\sqrt{x}\)
=>\(\sqrt{x}=2\)
=>x=4(nhận)
c: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-1\)
=>\(\sqrt{x}-1+1⋮\sqrt{x}-1\)
=>\(\sqrt{x}-1\inƯ\left(1\right)\)
=>\(\sqrt{x}-1\in\left\{1;-1\right\}\)
=>\(\sqrt{x}\in\left\{2;0\right\}\)
=>\(x\in\left\{4;0\right\}\)
\(A=\dfrac{5.\left(38^2-17^2\right)}{8\left(47^2-19^2\right)}\\ =\dfrac{5\left(38-17\right)\left(38+17\right)}{8\left(47-19\right)\left(47+19\right)}\\ =\dfrac{5.21.55}{8.28.66}\\ =\dfrac{5.1155}{8.1848}\\ =\dfrac{5.5}{8.8}\\ =\dfrac{25}{64}\)
\(B=\sqrt{\dfrac{0,2\times1,21\times0,3}{7,5\times3,2\times0,64}}\\ =\sqrt{0,0625\times1,890625\times0,04}\\ =\sqrt{\dfrac{121}{25600}}\\ =\dfrac{11}{160}\)
\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)
\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)
\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)
\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)
a)\(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)
\(=2.\sqrt{\dfrac{4^2}{3}}-3.\sqrt{\dfrac{1}{3.3^2}}-6\sqrt{\dfrac{2^2}{3.5^2}}\)
\(=2.\dfrac{4}{\sqrt{3}}-3.\dfrac{1}{3\sqrt{3}}-6.\dfrac{2}{5\sqrt{3}}=\dfrac{8}{\sqrt{3}}-\dfrac{1}{\sqrt{3}}-\dfrac{12}{5\sqrt{3}}\)\(=\dfrac{23}{5\sqrt{3}}=\dfrac{23\sqrt{3}}{15}\)
b)\(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)
\(=6\sqrt{\dfrac{8}{9}.\dfrac{1}{2}}-5\sqrt{\dfrac{32}{25}.\dfrac{1}{2}}+14\sqrt{\dfrac{18}{49}.\dfrac{1}{2}}\)
\(=6\sqrt{\dfrac{4}{9}}-5\sqrt{\dfrac{16}{25}}+14\sqrt{\dfrac{9}{49}}\)\(=6.\dfrac{2}{3}-5.\dfrac{4}{5}+14.\dfrac{3}{7}=6\)
c)\(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}=\left|\sqrt{2}-2\right|-\sqrt{4+2.2\sqrt{2}+2}=2-\sqrt{2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=2-\sqrt{2}-\left(2+\sqrt{2}\right)=-2\sqrt{2}\)
a)\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right)\div\sqrt{15}=\left(2\sqrt{3}+5\sqrt{3}+3\sqrt{3}\right)\div\sqrt{3}\sqrt{5}=10\sqrt{3}\div\sqrt{3}\sqrt{5}=\sqrt{2}\sqrt{5}\div\sqrt{5}=\sqrt{2}\)b)\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}\sqrt{9}\sqrt{7}-\sqrt{100}\sqrt{7}+\sqrt{16}\sqrt{9}\sqrt{7}-\sqrt{64}\sqrt{7}=2\cdot3\cdot\sqrt{7}-10\cdot\sqrt{7}+4\cdot3\cdot\sqrt{7}-8\sqrt{7}=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)
c)\(\sqrt{27^2-23^2}+\sqrt{37^2-35^2}=\sqrt{\left(27-23\right)\left(27+23\right)}+\sqrt{\left(37-35\right)\left(37+35\right)}=\sqrt{4\cdot50}\cdot\sqrt{2\cdot72}=\sqrt{4\cdot50\cdot2\cdot72}=\sqrt{2^2\cdot2\cdot25\cdot2\cdot36\cdot2}=\sqrt{16}\cdot\sqrt{25}\cdot\sqrt{36}=4\cdot5\cdot6=120\)
d)\(\left(\sqrt{\dfrac{1}{7}}+\sqrt{\dfrac{16}{7}}+\sqrt{\dfrac{9}{7}}\right)\div\sqrt{7}=\left(\dfrac{1}{\sqrt{7}}+\dfrac{4}{\sqrt{7}}+\dfrac{3}{\sqrt{7}}\right)\cdot\dfrac{1}{\sqrt{7}}=\dfrac{7}{\sqrt{7}}\cdot\dfrac{1}{\sqrt{7}}=1\)
\(A=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x^2++2xy+y^2\right)}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x-y\right)^2}{4}}=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\sqrt{3}\left(x-y\right)}{2}=\dfrac{\sqrt{3}}{x+y}\)
\(B=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(1-4a+4a^2\right)}=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(2a-1\right)^2}=\dfrac{1}{2a-1}\cdot\sqrt{5}a^2\left(2a-1\right)=\sqrt{5}\cdot a^2\)
a: Ta có: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)
\(=0\)
b: Ta có: \(\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}\)
\(=5+7-1\)
=11
b, \(\dfrac{2}{\sqrt{5}+2}+\dfrac{2}{2-\sqrt{5}}\)
\(=\dfrac{2\left(\sqrt{5}-2\right)}{5-4}-\dfrac{2\left(\sqrt{5}+2\right)}{5-4}\)
\(=2\sqrt{5}-4-2\sqrt{5}-4=-8\)
Bài 1:
a: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)
\(=8\sqrt{7}\)
Bài 3:
a: \(\sqrt{27^2-23^2}=10\sqrt{2}\)
b: \(\sqrt{37^2-35^2}=12\)
c: \(\sqrt{65^2-63^2}=16\)
d: \(\sqrt{117^2-108^2}=45\)