Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
\(a,x^3+2x^2+x\)
\(=x.\left(x^2+2x+1\right)\)
\(b,xy+y^2-x-y\)
\(=y.\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right).\left(x+y\right)\)
bài 3
\(a,3x.\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2,x=-2\end{cases}}\)
vậy x=0,x=2 hay x=-2
\(b,xy+y^2-x-y=0\)
\(y.\left(x+y\right)-\left(x+y\right)=0\)
\(\left(y-1\right).\left(x+y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-1=0\\x+y=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=-1\end{cases}}}\)
vậy x=-1, y=1
\(a,6x^2-9x=3x\left(x-3\right)\)
\(b,x^3-2x^2-3x+6\)
\(=\left(x^3-2x^2\right)-\left(3x-6\right)\)
\(=x^2\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x^2-3\right)\left(x-2\right)\)
\(e,2x\left(x-y\right)-3y\left(x-y\right)\)
\(=\left(2x-3y\right)\left(x-y\right)\)
a) 6x2 - 9x
= 3x (2x - 3)
b) x3 - 2x2 - 3x + 6
= x2(x - 2) - 3 (x - 2)
=(x - 2) (x2 - 3)
c) x2 - 4x + 4 - 9y2
= (x - 2)2 - 9y2
=(x - 2 - 3y)(x - 2 + 3y)
e) 2x(x - y) - 3y(x - y)
= (x - y)(2x - 3y)
xin lỗi mình học ngu nên không biết làm nhìu nha
Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó
Có một số câu thì mình không làm được. Mong bạn thông cảm!!!
\(x^2+6x+9=\left(x+3\right)^2\)
--
\(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
--
\(x^3+12x^2+48x+64=\left(x+4\right)^3\)
1) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}\)
\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
2) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+3^3-54-x^3\)
\(=27-54=-27\)
3) \(\left(2x+y\right)^2-\left(y+3x\right)^2\)
\(=4x^2+4xy+y^2-y^2-6xy-9x^2\)
\(=-5x^2-2xy\)
4) \(\left(2x+1\right)^3-\left(2x-1\right)^3-24x^2\)
\(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2\)
\(=2\)
Bài 2:
Ta có: \(f\left(a\right)=6a^5-10a^4-5a^3+23a^2-29a+2005\)
\(=\left(6a^5-10a^4-2a^3\right)-\left(3a^3-5a^2-a\right)+\left(18a^2-30a-6\right)+2011\)
\(=2a^3\left(3a^2-5a-1\right)-a\left(3a^2-5a-1\right)+6\left(3a^2-5a-1\right)+2011\)
\(=\left(2a^3-a+6\right)\left(3a^2-5a-1\right)+2011\)
Mà \(3a^2-5a-1=0\)
\(\Rightarrow f\left(a\right)=2011\)
Vậy...
\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)
\(b,5x^3y^2-25x^2y^3+40xy^4\)
\(=5xy^2\left(x^2-5xy+8y^2\right)\)
\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)
\(=-2x^2y^2\left(2x-3+4x^2y\right)\)
\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)
\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)
\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)
\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)
\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)
\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(a-b-c\right)\)
\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)
\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)
\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)
a,3x3y3−15x2y2=3x2y2(xy−5)a,3x3y3−15x2y2=3x2y2(xy−5)
b,5x3y2−25x2y3+40xy4b,5x3y2−25x2y3+40xy4
=5xy2(x2−5xy+8y2)=5xy2(x2−5xy+8y2)
c,−4x3y2+6x2y2−8x4y3c,−4x3y2+6x2y2−8x4y3
=−2x2y2(2x−3+4x2y)=−2x2y2(2x−3+4x2y)
d,a3x2y−52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y
=a3x2(y−52x2+23ay)=a3x2(y−52x2+23ay)
e,a(x+1)−b(x+1)=(x+1)(a−b)e,a(x+1)−b(x+1)=(x+1)(a−b)
f,2x(x−5y)+8y(5y−x)f,2x(x−5y)+8y(5y−x)
=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)
g,a(x2+1)+b(−1−x2)−c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)
=(x2+1)(a−b−c)=(x2+1)(a−b−c)
h,9(x−y)2−27(y−x)3h,9(x−y)2−27(y−x)3
=9(x−y)2+27(x−y)3
Bài làm :
Bài 1 :
\(a,-2x^3y.\left(2x^2-3y+5y^2\right)\)
\(=-4x^5y+6x^3y^2-10x^3y^3\)
\(b,\left(x+1\right)\left(x^2-x+1\right)\)
\(=x^3-x^2+x+x^2-x+1\)
\(=x^3+1\)
\(c,\left(2x-1\right).\left(3x+2\right).\left(3-x\right)\)
\(=\left[\left(2x-1\right)\left(3x+2\right)\right]\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2-6x^3+12x-4x^2-9x+3x^2-6+2x\)
\(=-6x^3+\left(18x^2-4x^2+3x^2\right)+\left(12x-9x+2x\right)-6\)
\(=-6x^3+17x^2+5x-6\)
Bài 2 :
\(\left(a+b\right).\left(a^3-a^2b+ab^2-b^3\right)\)
\(=a^4-a^3b+a^2b^2-ab^3+ba^3-a^2b^2+ab^3-b^4\)
\(=a^4+\left(-a^3b+ba^3\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)-b^4\)
\(=a^4-b^4\)
=> đpcm
Học tốt nha
4.
\(\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)
3.
\(x^2-4x-21=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot2+2^2=21+4\)
\(\Leftrightarrow\left(x-2\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)