Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, gọ̣̣i bthứ́c trên là A, ta có:
A=8y3-12y2+6y-1-2y*(4y2-12y+9)-12y2+12y
A=8y3-12y2+6y-1-8y3+24y2-18y-12y2+12y
A=-1
vây bthức A ko phu thuôc vào biến y
\(27y^3+9y^2+y+\frac{1}{27}\)
\(=\left(3y+\frac{1}{3}\right)^3\)
p/s: chúc bạn học tốt
\(\left(\frac{2}{3}xy^2-\frac{3}{2}y\right)^3=\frac{8}{27}x^3y^6-2x^2y^5+\frac{81}{8}xy^4-\frac{27}{8}y^3\)
=.= hok tốt!!
Bài 1. Ba số tự nhiên liên tiếp là \(a,a+1,a+2,\) với \(a\ge0\). Tích của 2 trong 3 số ấy là các số \(a\left(a+1\right),\left(a+1\right)\left(a+2\right),a\left(a+2\right).\) Theo giả thiết \(a\left(a+1\right)+\left(a+1\right)\left(a+2\right)+a\left(a+2\right)=242\to\left(a+1\right)\left(2a+2\right)+a^2+2a+1=243\)
suy ra \(\to2\left(a+1\right)^2+\left(a+1\right)^2=243\to3\left(a+1\right)^2=243\to\left(a+1\right)^2=81\to a+1=9\to a=8.\)
Bài 2.
a) CHẮC BẠN GÕ NHẦM ĐỀ BÀI. Đề chính xác là
\(\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right)\)
Đáp số là \(2^{2^5}+1=2^{32}+1\). Sở dĩ tôi chắc chắn như vậy, vì đây là phân tích nhân tử của số Fermat thứ 5.
b) Như trên ta biết rằng \(2^{32}+1=\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right)\) nên không phải là số nguyên tố.
\(\left(a-b\right)^2=a^2+b^2-2ab\\ \Rightarrow49=a^2+b^2-120\Rightarrow a^2+b^2=169\)
\(\left(a+b\right)^2=a^2+b^2+2ab=169+120=289\\ \Rightarrow a+b=17\)
\(a^2-b^2=\left(a-b\right)\left(a+b\right)=7\cdot17=119\)
\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=169^2-2\cdot60^2\\ =28561-7200=21361\)
\(2\left(x^2+y^2\right)=\left(x-y\right)^2\\ \Rightarrow2x^2+2y^2=x^2-2xy+y^2\\ \Rightarrow x^2+2xy+y^2=0\\ \Rightarrow\left(x+y\right)^2=0\Rightarrow x+y=0\Rightarrow x=-y\)