Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.
Trước hết ta thu gọn đa thức
A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3
Thay x = 5; y = 4 ta được:
A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy A = 129 tại x = 5 và y = 4.
b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.
Thay x = -1; y = -1 vào biểu thức ta được:
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
a, x2 + 2xy - 3x3 + 2y3 + 3x3 - y3
= (-3x3 + 3x3)+(2y3 - y3)+ x2 + 2xy
= -1y3 + x2 + 2xy
thay x = 5 va y = 4 vao da thuc x2 + 2xy - 3x3 + 2y3 + 3x3 - y3
ta co:5.2 + 2.5.4 - 3.5.3 + 2.4.3 + 3.5.3 - 4.3
= 10 + 40 - 45 + 24 + 45 - 12
= 62
2,
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
3,
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 - x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1.
Vậy P = 4y2 – 1.
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2 – 4xyz + xy + 5
Vậy Q = 7x2 – 4xyz + xy + 5.
4,
a, Thu gọn : x2+2xy-3x3+2y3+3x3-y3
= x2+2xy+(-3x3+3x3)+2y3-y3
=x2+2xy+2y3-y3
Thay x=5,y=4 vào đa thức x2+2xy+2y3-y3 Ta có:
52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy giá trị của đa thức x2+2xy+2y3-y3 tại x=5,y=4 là 129
b,
Thay x = -1; y = -1 vào biểu thức xy-x2y2+x4y4-x6y6+x8y8 Ta Có
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
Vậy giá trị của biểu thức xy-x2y2+x4y4-x6y6+x8y8 tại x=-1, y=-1 là 1
5,
a, C=A+B
C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1
C = 2x2 – y + xy - x2y2
b) C + A = B => C = B - A
C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)
C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1
C = - x2y2 - xy + 3y - 2.
Cách 1 : Gọi B = xy – x2y2 + x4y4 – x6y6 + x8y8
Thay x = –1 ; y = –1 vào biểu thức.
B = (–1).(–1) – (–1)2.(–1)2+ (–1)4.(–1)4 – (–1)6.(–1)6 + (–1)8.(–1)8
= + 1 – 1.1 + 1.1 – 1.1+ 1.1
= 1 – 1 + 1 – 1 + 1
= 1
Cách 2: Khi x = -1, y = -1 thì x.y = (-1).(-1) = 1.
Có : B = xy – x2y2 + x4y4 – x6y6 + x8y8 = xy – (xy)2 + (xy)4 – (xy)6 + (xy)8 = 1 - 1 + 1 - 1 + 1 = 1
a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{8}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=-\dfrac{1}{8}+\dfrac{1}{12}-\dfrac{1}{18}\)
\(=-\dfrac{7}{72}\)
b: \(B=\left(-1\cdot3\right)^2+\left(-1\right)\cdot3+\left(-1\right)^3+3^3\)
\(=9-3-1+27=36-4=32\)
c: \(C=-\dfrac{3}{4}xy^2-2x^2y-\dfrac{9}{2}xy\)
\(=\dfrac{-3}{4}\cdot\dfrac{1}{2}\cdot\left(-1\right)^2-2\cdot\dfrac{1}{4}\cdot\left(-1\right)-\dfrac{9}{2}\cdot\dfrac{1}{2}\cdot\left(-1\right)\)
\(=\dfrac{-3}{8}+\dfrac{1}{2}+\dfrac{9}{4}=\dfrac{19}{8}\)
Gọi A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3
Trước hết ta thu gọn đa thức :
A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3
= (– 3x3+ 3x3) + x2 + 2xy + (2y3– y3)
= 0 + x2 + 2xy + y3.
= x2 + 2xy + y3.
Thay x = 5 ; y = 4 vào A ta được :
A = 52+ 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy giá trị biểu thức x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 ; y = 4 bằng 129.
a) 5.(-2).(-1)2 + 2.(-2).(-1) – 3.(-2).(-1)2
= 5.(-2).1 + 4 – 3.(-2).1
= -10 + 4 + 6
= 0
b) x2y2 + x4y4 + x6y6 tại x = 1 và y = -1
= 12(-1)2 + 14(-1)4 + 16(-1)6
= 1.1 + 1.1 + 1.1
= 1+1+1
= 3
Đề bn ghi ko rõ nên mk lấy đề trên mạng còn bài mk tự lm nha
a, \(A=x^2y+\frac{1}{3}xy^2+\frac{3}{5}xy^2-2xy+3x^2y-\frac{2}{3}\)
\(=x^2y+\frac{xy^2}{3}+\frac{3}{5}xy^2-2xy+3x^2y-\frac{2}{3}\)
\(=x^2y+\frac{xy^2}{3}+\frac{3xy^2}{5}-2xy+3x^2y-\frac{2}{3}\)
\(=4x^2y+\frac{14xy^2}{15}-2xy-\frac{2}{3}\)
b, Khi thay x = -1 và y = 1/2 thì đa thức trên đc
\(A=-1^2.\frac{1}{2}+\frac{1}{3}.\left(-1\right).\left(\frac{1}{2}\right)^2+\frac{3}{5}\left(-1\right).\left(\frac{1}{2}\right)^2-2\left(-1\right).\left(\frac{1}{2}\right)+3\left(-1\right)^2.\left(\frac{1}{2}\right)-\frac{2}{3}\)
\(=-\frac{1}{2}-\frac{1}{12}-\frac{3}{20}-2\left(-1\right).\frac{1}{4}+3.1.\frac{1}{2}-\frac{2}{3}\)
\(=-\frac{1}{2}-\frac{1}{12}-\frac{3}{20}+2.\frac{1}{4}+3.\frac{1}{2}-\frac{2}{3}\)
\(=-\frac{1}{2}-\frac{1}{12}-\frac{3}{20}+\frac{1}{2}+\frac{3}{2}-\frac{2}{3}\)
\(=\frac{3}{5}\)
ヅViruSş ミ★Čøɾøŋα★彡
Em thay nhầm câu b rồi em!
Vào sửa lại đi!
\(a)P=3,5.x^2y-3.x.y^2+1,5.x^2.y+2.x.y+3.x.y^2\)
\(P=5.x^2.y+2.x.y\)
\(b)\text{Thay x=1;y=2 vào biểu thức P,ta được:}\)
\(5.1^2.2+2.1.2\)
\(=5.1.2+2.1.2\)
\(=10+4=14\)
\(\text{Vậy giá trị của biểu thức P tại x=1;y=2 là:14}\)
a.\(P=3,5x^2y-3xy^2+1,5x^2y+2xy+3xy^2\)
\(P=5x^2y+2xy\)
b. Thế x=1; y=2 vào P, ta được:
\(5.1^2.2+2.1.2=10+4=14\)