Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng tính chất tổng ba góc ta có :
A + B + C = 180 độ
90 độ + B + 30 độ = 180 độ
B = 60 độ
Xét tam giác AHB và tam giác ADH, có:
AH là góc chung
=> AHB = AHD = 90 độ
=> HB = HD (gt)
Vậy ADH = ABH (c.g.c)
=> AB = AD (có 2 cạnh tương ứng)
=> Tam giác ABD là tam giác đèu
b) ABD đều => BAD = 60 độ
Vậy BAD + DAC = 90 độ
=> 60 độ + DAC = 90 độ
=> DAC = 30 độ
Xét từng tam giác ta có :
Tam giác DAC có góc DAC = 30 độ
Vậy tam giác DAC cận tại D
=> AD = CD
Xét 2 tam giác ADH và CDE có DEC = DEH = 90 độ
=> AD = CD
=> CED = AHD
=> EHD = CED (ch - gc)
=> AH = CE
c) DE = DH (cạnh tương ứng)
Vậy DHE cân tại E.
=> DHE = (180 - EHD) : 2 => cân tại D
=> DAC = (180 - ADC) : 2 => ADC = EDH (đối đỉnh)
=> DEH = DAC
Mà DEH = DAC so le trong.
Vậy EH//AC

a )
Xét : \(\Delta ABHva\Delta ADH,co:\)
\(\widehat{H_1}=\widehat{H_2}=90^o\left(gt\right)\)
BH = HD ( gt )
AH là cạnh chung
Do do : \(\Delta ABH=\Delta ADH\left(c-g-c\right)\)
b )
Ta có : \(\Delta ABD\) là tam giác đều ( cmt )
= > \(\widehat{BAD}=60^o\) ( trong tam giác đều mỗi góc bằng 60o )
Ta có : \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^o-60^o=30^o\) ( tia AD nằm giữa 2 tia AB và AC )
Hay : \(\widehat{EAD}=30^o\left(E\in AC\right)\)
Ta có :\(\widehat{ADH}=60^o\) ( \(\Delta ABD\) là tam giác đều )
Ta có : \(\widehat{HAD}=\widehat{H_2}-\widehat{ADH}=90^o-60^o=30^o\)
Ta có : \(AH\perp BC\) và \(ED\perp BC\)
= > \(AH//ED\) ( vì cùng vuông góc với BC )
=> \(\widehat{HAD}=\widehat{ADE}=30^o\) ( 2 góc so le trong của AH//ED )
=> \(\Delta AED\) là tam giác cân , và cân tại E ( vì có 2 góc ở đáy bằng nhau ( \(\widehat{HAD}=\widehat{ADE}=30^o\)) )
c ) mình không biết chứng minh AH = HF = FC nha , mình chỉ chứng minh \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) thôi nha :
Ta có : \(\Delta ABC\) vuông tại A và AH là đường cao ( gt )
= > \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) ( hệ thức lượng trong tam giác vuông )
Hình mình vẽ hơi xấu , thông cảm nha
HỌC TỐT !!!
a) Tam giác ABC có AH là đường cao đồng thời là trung tuyến ( BH=HD)
\(\rightarrow\) tam giác ABD cân tại A
Mà \(\widehat{B}\) = 60 độ \(\rightarrow\) tam giác ABD đều
b) Tam giác ABD đều nên \(\widehat{ADB}\) = \(\widehat{BAD}\) = 60 độ
\(\rightarrow\) \(\widehat{ADE}\) = \(\widehat{HDE}\) - \(\widehat{ADB}\) = 30 độ
Tương tự có \(\widehat{DAE}\) = 30độ
\(\Rightarrow\) Tam giác ADE cân tại E
c1) Xét tam giác AHC và tam giác CFA
\(\widehat{ACF}\) = \(\widehat{CAF}\) = 30độ
AC chung
\(\rightarrow\) tam giác bằng nhau ( cạnh huyền - góc nhọn)
\(\rightarrow\) AH = FC
Ta có \(\widehat{BAD}\) = 60 độ và \(\widehat{BAH}\) = 30 độ
\(\rightarrow \) \(\widehat{HAD}\) = 30 độ hay \(\widehat{HAF}\) = 30 độ
____Phần còn lại cm tam giác HAF cân là ra
Mk bận chút việc nên ms làm đến đây thui nka ~

a) trong tam giác ABC có: Â + B + C = 1800 (đ/lý)
=> 900 + B + 300 = 1800
=> B = 1800 - (900 + 300)
B = 600 (1)
xét 2 tam giác vuông ABH và ADH có:
AH chung
HD = HB (gt)
=> tam giác ABH = tam giác ADH (ch-cgv)
=> AB = AD (cạnh tương ứng)
=> tam giác ABD cân tại A (2)
từ (1) và (2) => tam giác ABD là tam giác đều

a) xét tam giác ABD có AH là đường cao( AH vuông góc với BC)
đồng thời AH là đường trung tuyến( HD=HB)
=> tam giác ABD cân tại A(1)
lại có tam gisc ABC vuông tại A, gocs C=30 độ
=> góc B=90 độ = 90-30 =60 độ(2)
từ(1) (2)=> tam giác ABD đều
b) tam giác ABD đều => góc BAD=60 độ
vậy ta có góc BAD+góc DAC=90
hay 60+góc DAC=90
góc DAC=30 độ
Xét tam giác ADC có góc DAC=góc DCA=30
Vậy tam giác ADC cân tại D=> AD=DC
Xét tam giác ADH và tam giác CDE có
góc DEC=góc DHA=90
AD=CD(cmt)
góc CDE=góc ADH(đối đỉnh)
=> tam giác ADH=tam giác CDE(ch-gc)
=> AH= CE(2 cạnh tương ứng)
a, xét tam giác ABD có AH là đường cao( AH vuông góc với BC)
đồng thời AH là đường trung tuyến( HD=HB)
=> tam giác ABD cân tại A(1)
lại có tam gisc ABC vuông tại A, godc C=30 độ
=> góc B=90 độ-gócc
=90-30 =60 độ(2)
từ(1) (2)=> tam giác ABD đều

a,xét tam giác AHB và tam giác AHD
có góc bằng nhau
canh bằng nhau\suy ra hai tam giácbằng nhau
suy ra ^bah=^DAH
mà BAH=30 độ(ABH=60 độ xét tam giác AHB vuông suy ra BAH=30 độ)
suy ra ^BAD=60 độ(1)
lại có BA=AD
suy ra tam giấcBDA cân (2) từ 1 vf 2 suy ra ABD dều
b,TA có ^DAC+^DAB=9o độ
suy ra DAC=30 độ
suy ra tam giác DAC cân
suy ra AD = DC
xét tam giác ADH và tam giác CDE
có AD=DC
ADH=CDE
suy ra 2 tam giác bằng nhau
suy ra AH = CE
tích đung cho mik nha
cảm ơn nha
còn bài nào thì cứ đăng lên
A B C H D E
a) Tam giác ABC vuông tại A
=> Góc ABC + góc ACB = 90o
Mà góc ACB = 30o
=> Góc ABC = 60o (1)
Xét hai tam giác vuông ABH và ADH có:
HB = HD (gt)
AH: cạnh chung
Vậy: tam giác ABH = tam giác ADH (hcgv)
Suy ra: góc ABH = góc ADH (hai góc tương ứng)
Mà góc ABH = 60o
=> Góc ADH = 60o (2)
Từ (1) và (2) suy ra: tam giác ABD đều.