Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co: 6x-2y=x+y(nhan cheo)
\(\Rightarrow\)5x=3y
\(\Rightarrow\)x/y=3/5
Vì \(\hept{\begin{cases}\left(x+2y-4\right)^2\ge0\\\left(2x-3y-1\right)^2\ge0\end{cases}}\)=> \(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2\ge0\)
\(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2=0\) <=> \(\left(x+2y-4\right)^2=\left(2x-3y-1\right)^2=0\)
<=>\(x+2y-4=2x-3y-1=0\)
\(x+2y-4=0\Leftrightarrow x+2y=4\Leftrightarrow2\left(x+2y\right)=8\Leftrightarrow2x+4y=8\)
\(2x-3y-1=0\Leftrightarrow2x-3y=1\)
=>\(\left(2x-3y\right)-\left(2x+4y\right)=1-8\)
=>\(2x-3y-2x-4y=-7\)
=>\(-7y=-7\)=>\(y=1\)=>\(x=2\)
Vậy .............................
Xét hiệu
a/b - (a+1)/(b+1)=a(b+1)/b(b+1) - (a+1)b/(b+1)b=(ab+a-ab-b)/b(b+1)=(a-b)/b(b+1)
Mà a>b>0(gt)=>(a-b)/b(b+1)>0=>a/b>(a+1)/(b+1)
Sai đề nhé: Sửa đề:
\(A=\dfrac{5^{100}+2}{5^{102}+2};B=\dfrac{5^{101}+2}{5^{103}+2}\)
nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{5^{101}+2}{5^{103}+2}< 1\)
\(B< \dfrac{5^{101}+2+8}{5^{103}+2+8}\Rightarrow B< \dfrac{5^{101}+10}{5^{103}+10}\Rightarrow B< \dfrac{5\left(5^{100}+2\right)}{5\left(5^{101}+2\right)}\Rightarrow B< \dfrac{5^{100}+2}{5^{101}+2}=A\)
\(B< A\)
nè bạn ơi bạn nhập nó vânx như cũ mà có khác các gì đâu bạn!