Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2^300 = (2^3)^100 = 8^100
3^200 = (3^2)^100 = 9^100
Vì 8<9 => 8^100 < 9^100
Vậy 2^300 < 3^200
a) | - 2 |300và | - 4 | 150
\(\Rightarrow\) | - 2 |300=2300
\(\Rightarrow\)| - 4 | 150=4150=(22)150=2300
\(\Rightarrow\)2300=2300
Vậy | - 2 |300=| - 4 | 150
a) | - 2 |300 = | - 4 | 150
b) | - 2 | 300 < | - 3 | 200
Ta có : 2300 = 23.100
= (23)100
= 8100
Lại có : 3200 = 32.100 = (32)100 = 9100
Vì 8100 < 9100
nên 2300 < 3200
Vậy 2300 < 3200
\(^{2^{300}}\)và \(3^{200}\)
\(^{2^{300}}\) = \(^{2^{3.100}}\) = \(^{\left(2^3\right)^{100}}\) = \(^{8^{100}}\)
\(^{3^{200}}\) = \(^{3^{2.100}}\) = \(^{\left(3^2\right)^{100}}\)= \(^{9^{100}}\)
vì 8 < 9 nên \(^{2^{300}}\) < \(^{3^{200}}\)
1, Vì A, B < 1
\(\Rightarrow B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)
2, Đề là thế này?? \(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+3+...+200\right)\)
\(\Rightarrow C=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{4.3}{2}+...+\frac{1}{200}.\frac{200.201}{2}\)
\(\Rightarrow C=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{201}{2}\)
\(\Rightarrow C=\frac{\left(2+201\right).200}{4}=10150\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
Ta có : 3200 = (32)100 = 9100
2300 = ( 23 )100 = 8100
Vì 8<9 => 3200 .>2300
Trả lời:
\(3^{200}>2^{200}\)
Hok tốt!
~~~
Ta có 3 > 2
suy ra 3200 > 2200
~~!!
~~~!!