Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) rút gọn
\(S=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
= \(\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
=\(\left(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right):\dfrac{\left(2x-6\right)\left(x-6\right)}{x\left(x+6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)
=\(\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}:\dfrac{\left(2x-6\right)\left(x-6\right)}{x\left(x+6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)
= \(\dfrac{6\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}\cdot\dfrac{x\left(x-6\right)\left(x+6\right)}{\left(2x-6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)
= \(\dfrac{6}{x-6}+\dfrac{-x}{-\left(6-x\right)}\)
= \(\dfrac{6}{x-6}+\dfrac{-x}{x-6}=\dfrac{6-x}{x-6}=-1\)
b)
Tìm x để giá trị của S = -1
Với mọi x khác 6 thì giá trị của S = -1
b)
Vì giá trị của biểu thức đã được xác định nên giá trị của
S = -1 không phụ thuộc vào giá trị của biến x.
a) Tớ làm luôn nhé , không chép lại đề đâu
P = \(\left[\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right].\dfrac{x\left(x+6\right)}{2x-6}\)
ĐKXĐ : x # -6 ; x # 6 ; x # 0 ; x # 3 . Khi đó , ta có :
P = \(\left[\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right]\).\(\dfrac{x\left(x+6\right)}{2x-6}\)
P = \(\dfrac{x^2-x^2+12x-36}{x-6}.\dfrac{1}{2x-6}\)
P = \(\dfrac{6\left(2x-6\right)}{x-6}.\dfrac{1}{2x-6}=\dfrac{6}{x-6}\)
b) Tương tự
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
ta có:
(\(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\)):\(\dfrac{2x-6}{x^2+6x}\)+\(\dfrac{x}{6-x}\)
= (\(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)):\(\dfrac{2x-6}{x^2+6x}\)+\(\dfrac{x}{6-x}\)
= (\(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\)).\(\dfrac{x^2+6x}{2x-6}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\).\(\dfrac{x^2+6x}{2x-6}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{x^2-x^2+12x-36}{x\left(x-6\right)\left(x+6\right)}\).\(\dfrac{x^2+6x}{2x-6}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{12x-36}{x\left(x-6\right)\left(x+6\right)}\). \(\dfrac{x^2+6x}{2x-6}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{12\left(x-3\right)}{x\left(x-6\right)\left(x+6\right)}\).\(\dfrac{x\left(x+6\right)}{2\left(x-3\right)}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{6}{x-6}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{6}{x-6}\)- \(\dfrac{x}{x-6}\)
= \(\dfrac{6-x}{x-6}\)
= \(\dfrac{-\left(x-6\right)}{x-6}\)
= -1
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
a) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\) MTC: \(2x\left(x+3\right)\)
\(=\dfrac{3x}{2x\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)
\(=\dfrac{3x-\left(x-6\right)}{2x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{1}{x}\)
b) \(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x+6}{4-x^2}\)
\(=\dfrac{4}{x+2}+\dfrac{2}{x-2}-\dfrac{5x+6}{x^2-4}\)
\(=\dfrac{4}{x+2}+\dfrac{2}{x-2}-\dfrac{5x+6}{\left(x-2\right)\left(x+2\right)}\) MTC: \(\left(x-2\right)\left(x+2\right)\)
\(=\dfrac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5x+6}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)+2\left(x+2\right)-\left(5x+6\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8+2x+4-5x-6}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x-10}{\left(x-2\right)\left(x+2\right)}\)
c) \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
\(=\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{3x-2}{4x^2-2x}\)
\(=\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{3x-2}{2x\left(2x-1\right)}\) MTC: \(2x\left(2x-1\right)\)
\(=\dfrac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{2x\left(3x-2\right)}{2x\left(2x-1\right)}-\dfrac{3x-2}{2x\left(2x-1\right)}\)
\(=\dfrac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)-\left(3x-2\right)}{2x\left(2x-1\right)}\)
\(=\dfrac{2x-1-6x^2+3x+6x^2-4x-3x+2}{2x\left(2x-1\right)}\)
\(=\dfrac{-2x+1}{2x\left(2x-1\right)}\)
\(=\dfrac{-\left(2x-1\right)}{2x\left(2x-1\right)}\)
\(=\dfrac{-1}{2x}\)
d) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\) MTC: \(\left(x-1\right)\left(x^2+x+1\right)\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2\left(x-2\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x^2+2\right)+2\left(x-2\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+2+2x-4-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-3+x}{\left(x-1\right)\left(x^2+x+1\right)}\)
Rút gọn biểu thức
a) \(A=\dfrac{x+3}{2x^2+6x}\)
\(A=\dfrac{1.\left(x+3\right)}{2x\left(x+3\right)}\)
\(A=\dfrac{1}{2x}\)
b) \(B=\dfrac{2x-9}{x-6}+\dfrac{2-x}{x-6}-\dfrac{1}{6-x}\)
\(B=\dfrac{2x-9}{x-6}+\dfrac{2-x}{x-6}+\dfrac{1}{x-6}\)
\(B=\dfrac{2x-9+2-x+1}{x-6}\)
\(B=\dfrac{x-6}{x-6}\)
\(B=1\)
a)S=\(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
=\(\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
\(\left(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right):\dfrac{2x-6}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
=\(\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
=\(\dfrac{6\left(2x-6\right)x\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(2x-6\right)}+\dfrac{x}{6-x}\)
=\(\dfrac{6}{x-6}+\dfrac{x}{6-x}\)
=\(\dfrac{6}{x-6}-\dfrac{x}{x-6}=\dfrac{6-x}{x-6}=-1\)
b ) S khi rút gọn=-1 => mọi giá trị của x đều thỏa mãn S=-1