\(\frac{1}{3^1}\)+\(\frac{1}{3^2}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Leftrightarrow3A=1+\frac{1}{3}+\frac{1}{3^{^2}}+...+\frac{1}{3^{98}}\)

\(\Leftrightarrow3A-A=1-\frac{1}{3^{99}}\)

\(\Leftrightarrow2A=1-\frac{1}{3^{99}}\)

\(\Leftrightarrow A=\left(1-\frac{1}{3^{99}}\right)\div2\)

23 tháng 4 2017

Ai trả lời giúp mik nha

26 tháng 2 2018

Mk làm mẫu câu a nha

a, Có : 

2A = 1+1/2+1/2^2+.....+1/2^98

A = 2A - A = (1+1/2+1/2^2+.....+1/2^98)-(1/2+1/2^2+......+1/2^99) = 1 - 1/2^99

Tk mk nha

26 tháng 2 2018

nhân A với 2 rồi lấy 2A-A