K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
9 tháng 8 2021

bài 1.

a.\(A=x^2-2xy+y^2+x^2+2xy+y^2=2\left(x^2+y^2\right)\)

b.\(B=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=4xy\)

c.\(C=4a^2+4ab+b^2-\left(4a^2-4ab+b^2\right)=8ab\)

d.\(D=4x^2-4x+1-2\left(4x^2-12x+9\right)+4=-4x^2+20x-13\)

.bài 2

a.\(A=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)=10x+16;x=-\frac{1}{2}\Rightarrow A=9\)

b.\(B=9x^2+24x+16-x^2+16-10x=8x^2+14x+32\Rightarrow x=-\frac{1}{10}\Rightarrow B=\frac{767}{25}\)

c.\(C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)=6x-12\Rightarrow x=1\Rightarrow C=-6\)

d.\(D=x^2-9+x^2-4x+4-2x^2+8x=4x-5\Rightarrow x=-1\Rightarrow A=-9\)

9 tháng 8 2021

Trả lời:

Bài 1: Rút gọn biểu thức:

a) A = ( x - y )2 + ( x + y )2

= x2 - 2xy + y2 + x2 + 2xy + y2

= 2x2 + 2y2 

b) B = ( x + y )2 - ( x - y )2 

= x2 + 2xy + y2 - ( x2 - 2xy + y2 )

= x2 + 2xy + y2 - x2 + 2xy - y2

= 4xy

c) C = ( 2a + b )2 - ( 2a - b )2 

= 4a2 + 4ab + b2 - ( 4a2 - 4ab + b2 )

= 4a2 + 4ab + b2 - 4a2 + 4ab - b2 

= 8ab

d) D = ( 2x - 1 )2 - 2 ( 2x - 3 )2 + 4

= 4x2 - 4x + 1 - 2 ( 4x2 - 12x + 9 ) + 4

= 4x2 - 4x + 1 - 8x2 + 24x - 18 + 4

= - 4x2 + 20x - 13

Bài 2: Rút gọn rồi tính giá trị biểu thức:

a) A = ( x + 3 )2 + ( x - 3 )( x + 3 ) - 2 ( x + 2 )( x - 4 )

= x2 + 6x + 9 + x2 - 9 - 2 ( x2 - 2x - 8 ) 

= 2x2 + 6x - 2x2 + 4x + 16

= 10x + 16

Thay x = 1/2 vào A, ta có:

\(A=10.\left(-\frac{1}{2}\right)+16=-5+16=11\)

b) B = ( 3x + 4 )2 - ( x - 4 )( x + 4 ) - 10x

= 9x2 + 24x + 16 - x2 + 16 - 10x 

= 8x2 + 14x + 32

Thay x = - 1/10 vào B, ta có:

\(B=8.\left(-\frac{1}{10}\right)^2+14.\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)

c) C = ( x + 1 )2 - ( 2x - 1 )2 + 3 ( x - 2 )( x + 2 )

= x2 + 2x + 1 - 4x2 + 4x - 1 + 3 ( x2 - 4 )

= - 3x2 + 6x + 3x2 - 12

= 6x - 12

Thay x = 1 vào C, ta có:

\(C=6.1-12=-6\)

d) D = ( x - 3 )( x + 3 ) + ( x - 2 )2 - 2x ( x - 4 ) 

= x2 - 9 + x2 - 4x + 4 - 2x2 + 8x

= 4x - 5

Thay x = - 1 vào D, ta có:

\(D=4.\left(-1\right)-5=-9\)

2 tháng 9 2021

a/ \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)

\(=-3x^2+7x-4\)

Thay x = 2 vào A được:

\(=-3.2^2+7.2-4=-2\)

Vậy: Giá trị của A khi x = 2 là -2

==========

b/ \(B=126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)\)

\(=126y^3+x^3-125y^3\)

Thay x = -5 và y = -3 vào B được: 

\(126.\left(-3\right)^3+\left(-5\right)^3-125.\left(-3\right)^3=-152\)

Vậy: Giá trị của B tại x = -5 và y = -3 là -152

==========

c/ \(C=a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)

\(=a^3+b^3-\left(a-b\right)^3\)

\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)

\(=2b^3+3a^2b-3ab^2\)

Thay a = -4 và b = 4 vào C được:

\(2.4^3+3.\left(-4\right)^2.4-3.\left(-4\right).4^2=512\)

Vậy: Giá trị của C tại a = -4 vào b = 4 là 512

a:Ta có: \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)

\(=-3x^2+7x-4\)

\(=-3\cdot2^2+7\cdot2-4\)

\(=-12-4+14=-2\)

c: Ta có: \(C=a^3+b^3-\left(a-b\right)\left(a^2-2ab+b^2\right)\)

\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)

\(=2b^3+3a^2b-3ab^2\)

\(=2\cdot4^3+3\cdot\left(-4\right)^2\cdot4-3\cdot\left(-4\right)\cdot4^2\)

\(=128+192+192=512\)

19 tháng 7 2021

Trả lời:

Bài 4:

b, B =  ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 ) 

= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1 

= x8 - 1

Thay x = 2 vào biểu thức B, ta có:

28 - 1 = 255

c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 ) 

= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1

= x7 + 1

Thay x = 2 vào biểu thức C, ta có:

27 + 1 = 129

d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 ) 

= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x

= x

Thay x = - 5 vào biểu thức D, ta có:

D = - 5

Bài 5: 

a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )

= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4

= x4 - y4

Thay x = 2; y = - 1/2 vào biểu thức A, ta có:

A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16

b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 ) 

= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5 

= a5 + a4b - ab4 - b5

Thay a = 3; b = - 2 vào biểu thức B, ta có:

B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65

c, ( x2 - 2xy + 2y2 ) ( x+ y) + 2x3y - 3x2y+ 2xy3 

= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y+ 2xy3

= x4 + 2y4

Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:

( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16

31 tháng 8 2021

Tách ra mỗi câu một lần.

Dài quá không ai làm đâu.

Nhìn nản lắm.

Câu 3: 

a: \(49^2=2401\)

b: \(51^2=2601\)

c: \(99\cdot100=9900\)

15 tháng 8 2020

a) A = (x+3)2 + (x-3)(x+3) - 2(x+2)(x - 4)

        = (x + 3)(x + 3) + (x - 3)(x + 3) - 2[x(x - 4) + 2(x - 4)]

        = x(x + 3) + 3(x + 3) + x(x + 3) - 3(x + 3) - 2[x2 - 4x + 2x - 8]

        = x2 + 3x + 3x + 9 + x2 + 3x - 3x - 9 - 2(x2 - 2x - 8)

        = x2 + 3x + 3x + 9 +x2 + 3x - 3x - 9 - 2x2 + 4x + 16

        = (x2 + x2 - 2x2) + (3x + 3x + 3x - 3x + 4x) + (9 - 9 + 16) = 10x + 16

Thay x = -1/2 vào biểu thức trên ta có : \(10\cdot\left(-\frac{1}{2}\right)+16=-5+16=11\)

b) \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\)

\(B=9x^2+24x+16-x\left(x+4\right)+4\left(x+4\right)-10x\)

\(B=9x^2+24x+16-x^2-4x+4x+16-10x\)

\(B=\left(9x^2-x^2\right)+\left(24x-4x+4x-10x\right)+\left(16+16\right)\)

\(B=8x^2+14x+32\)

Thay x = -1/10 vào biểu thức trên ta có : \(B=8\cdot\left(-\frac{1}{10}\right)^2+14\cdot\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)

c) \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)

\(C=x^2+2x+1-\left(2x-1\right)\left(2x-1\right)+3\left(x^2-4\right)\)

\(C=x^2+2x+1-2x\left(2x-1\right)+1\left(2x-1\right)+3x^2-12\)

\(C=x^2+2x+1-4x^2+2x+2x-1+3x^2-12\)

\(C=\left(x^2-4x^2+3x^2\right)+\left(2x+2x+2x\right)+\left(1-1-12\right)\)

\(C=6x-12\)

Thay x = 1 vào biểu thức ta có : C = 6.1 - 12 = 6 -12 = -6

Còn bài kia làm nốt đi

Bài 1 : Dùng hẳng thức triển khai các tích sau : a ) ( 2x - 3y )*(2x+3y)b ) ( 1+5a)*(1+5a)c ) (2a+3b)*(2a+3b)d) ( a+b+c)*(a+b+c) e ) ( x+y-1)*(x-y-1)Bài 2 : Rút gọn rồi tính giá trị của biểu thức :1. M = ( 2x+y)^2-(2x+y)*(2x-y)*y*(x-y)với x=-2 ; y=32. N = ( a-3b)^2-(a+3b)^2-(a-1)*(b-2) với a=1/2;b=-33. P = (2x-5)*(2x+5)-(2x+1)^2 với x= -2005 4. Q = ( y-3)*(y+3)*(y^2+9)-(y^2+2)*(y^2-2) với y = 2013^2014Bài 3 : Tìm x , biết :a ) ( x-2)^2 -(x+3)^2-4*(x+1)=5b) (...
Đọc tiếp

Bài 1 : Dùng hẳng thức triển khai các tích sau : 

a ) ( 2x - 3y )*(2x+3y)

b ) ( 1+5a)*(1+5a)

c ) (2a+3b)*(2a+3b)

d) ( a+b+c)*(a+b+c) 

e ) ( x+y-1)*(x-y-1)

Bài 2 : Rút gọn rồi tính giá trị của biểu thức :

1. M = ( 2x+y)^2-(2x+y)*(2x-y)*y*(x-y)với x=-2 ; y=3

2. N = ( a-3b)^2-(a+3b)^2-(a-1)*(b-2) với a=1/2;b=-3

3. P = (2x-5)*(2x+5)-(2x+1)^2 với x= -2005 

4. Q = ( y-3)*(y+3)*(y^2+9)-(y^2+2)*(y^2-2) với y = 2013^2014

Bài 3 : Tìm x , biết :

a ) ( x-2)^2 -(x+3)^2-4*(x+1)=5

b) ( 2x-3)*(2x+3)-(x-1)^2-3x*(x-5)=-44

c ) (5x+1)^2-(5x+3)*(5x+3)=30

d) ( x+3 )^2+(x-2)*(x+2)-2*(x-1)^2=7

Bài 4 : So sánh :

a ) A = 2005*2007 và B = 2006^2

b ) (2+1)*(2^2+1)*(2^4+1)*(2^8+1) và D = 2^32

c ) ( 3+1)*(3^2+1)*(3^4+1)*(3^16+1)=3^32-1

Bài 5 : Tính nhanh : 

1 ) 127^2+146*127+73^2

2) 9^8*2^8-(18^4+1)

3) 100^2 -99^3 +98^2-97^2+....+2^2-1^2

4 ) 180^2-220^2/125^2+150*125+75^2

5 ) ( 20^2 +18^2+16^2+....+4^2+2^2 ) -( 19^2+17^2+...+3^2+1^2 ) 

_____________________________________________________________________________

BÀI TẬP BỔ SUNG 

Bài 1 : CM các BT sau có giá trị không âm 

A = x^2-4x+9

B= 4x^2+4x+2007 

C= 9-6x+x^2

D= 1-x+x^2

Bài 2 : 

a . Cho a>b>0 ; 3a^2+3b^2 = 10ab . Tính P=a-b/a+b

b. Cho a>b>0 ; 2a^2+2b^2=5ab .Tính E= a+b/a-b 

Bài 3 : Cho biểu thức : A = ( x-2)^2-(x+5)*(x-5) 

a ) Rút gọn A 

b) Tìm x để A = 1 

c ) Tính giá trị của biểu thức A tại -3/4

Bài 6 :

a ) Tính nhanh : 2006^2-36

b ) CMR biểu thức sau có giá trị không âm :

1 . B= x^2-x+1 

2. C = 2x^2 +y^2-2xy-10x+27

6
4 tháng 8 2016

ngất

4 tháng 8 2016

choán

Bài 2:

a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-14x=-4\)

hay \(x=\dfrac{2}{7}\)

b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)

\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)

\(\Leftrightarrow x^3=-8\)

hay x=-2

Bài 1: 

a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)

\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)

\(=xy\)

=1

b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)

\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)

\(=x^2-y^2\)

\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)

22 tháng 10 2023

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)

1 tháng 8 2020

Bài 1 :

a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)

\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)

\(=-x^3y+2x^2y^2-3xy\)

c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)

\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)

\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)

d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)

\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)

\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)

e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)

\(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)

\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)

1 tháng 8 2020

Bài 2 :

3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15

Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)

\(=-\frac{15}{2}-3+15=\frac{9}{2}\)

b) 25x - 4(3x - 1) + 7(5 - 2x)

= 25x - 12x + 4  + 35 - 14x

= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39

Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37

c) 4x - 2(10x + 1) + 8(x - 2)

= 4x - 20x - 2 + 8x - 16

= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18

Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)

d) Tương tự

Bài 3:

a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)

=> 2x2 - 8x - 2x2 - 3x = 4

=> (2x2 - 2x2) + (-8x - 3x) = 4

=> -11x = 4

=> x = \(-\frac{4}{11}\)

b) x(5 - 2x) + 2x(x - 7) = 18

=> 5x - 2x2 + 2x2 - 14x = 18

=> 5x - 14x = 18

=> -9x = 18

=> x = -2

Còn 2 câu làm tương tự

25 tháng 12 2021

\(a.\left(3x-1\right)^2+\left(x+3\right)\left(2x-1\right)\)

\(=9x^2-6x+1-2x^2+x-6x+3\)

\(=7x^2-11x+4\)