K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

1) a) \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)

\(=\frac{x+3\sqrt{x}+2}{x-4}+\frac{2x-4\sqrt{x}}{x-4}+\frac{-2-5\sqrt{x}}{x-4}\)

\(=\frac{3x-6\sqrt{x}}{x-4}\)

   b) \(Q=1\Leftrightarrow3x-6\sqrt{x}=x-4\)

\(\Leftrightarrow2x-6\sqrt{x}+4=0\)

Đặt \(\sqrt{x}=t\)\(\left(t\ge0\right)\)

\(pt\Leftrightarrow2t^2-6t+4=0\)

\(\Delta=\left(-6\right)^2-4.2.4=4,\sqrt{\Delta}=2\)

pt ẩn phụ có 2 nghiệm:

\(t_1=\frac{6+2}{4}=2\);\(t_2=\frac{6-2}{4}=1\)

\(\Rightarrow x\in\left\{1;4\right\}\)

giúp mình với ạ

25 tháng 9 2019

bạn kiểm tra lại thử đề có sai không ạ?

23 tháng 8 2023

Do (d1) song song với đường thẳng y = 2x nên a = 2

(d1): y = 2x + b

Thay tọa độ điểm (1; -1) vào (d) ta được:

2.1 + b = -1

⇔ b = -1 - 2

⇔ b = -3

Vậy (d1): y = 2x - 3

b) x = 0 ⇒ y = -3

*) Đồ thị:

loading...  

c) Phương trình hoành độ giao điểm của (d1) và (d2):

2x - 3 = 1/2 x + 1

⇔ 2x - 1/2 x = 1 + 3

⇔ 3/2 x = 4

⇔ x = 4 : 2/3

⇔ x = 8/3

⇒ y = 2.8/3 - 3 = 7/3

Vậy tọa độ giao điểm của (d1) và (d2) là (8/3; 7/3)

d) Ta có:

Gọi a là góc cần tính

⇒ tan(a) = 2

⇒ a ≈ 63⁰

23 tháng 8 2023

(b) và (d) bạn tự xem kiến thức vẽ rồi áp dụng công thức tan là làm được nha=)

a)

Đồ thị hàm số (d1)// đường thẳng `y=2x`

=> \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne0\end{matrix}\right.\)

=> `y=2x+b`

Do hàm số `y=2x+b` đi qua điểm `(1;-1)` nên `x=1`, `y=-1`:

`-1=2.1+b`

=> `b=-3`

Vậy hàm số `y=ax+b` là `y=2x-3`

c)

Ta có PTHĐGĐ giữa `d_1` và `d_2`:

 \(2x-3=\dfrac{1}{2}x+1\\ \Rightarrow x=\dfrac{8}{3}\Rightarrow y=\dfrac{7}{3}\)

Vậy `E=`\(\left(\dfrac{8}{3};\dfrac{7}{3}\right)\)

$HaNa$

2:

a: Thay x=0 và y=-3 vào (d), ta được:

3*0+b=-3

=>b=-3

b: Thay x=-4 và y=0 vào (d), ta được:

3*(-4)+b=0

=>b=12

c: Thay x=-1 và y=2 vào (d), ta được:

3*(-1)+b=2

=>b-3=2

=>b=5

9 tháng 5 2022

Với a >= 0 ; a khác 9 

\(P=\dfrac{2a-6\sqrt{a}+a+4\sqrt{a}+3-3-7\sqrt{a}}{a-9}=\dfrac{3a-9\sqrt{a}}{a-9}=\dfrac{3\sqrt{a}}{\sqrt{a}+3}\)

b, Để hàm số trêm là hàm bậc nhất khi a khác 0 

Cho (d') : y = ax - 4 Để (d') cắt (d) khi a khác -3 

Thay y = 5 vào (d) ta được <=> 5 = -3x + 2 <=> x = -1 

(d) cắt (d') tại A(-1;5) 

<=> 5 = -a - 4 <=> a = -9 (tm) 

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

19 tháng 6 2019

1, \(x=13-4\sqrt{10}=\frac{26-8\sqrt{10}}{2}=\frac{10-2.4.\sqrt{10}+16}{2}=\frac{\left(\sqrt{10}-4\right)^2}{2}\)

Ta có: \(Q=x+\sqrt{5x}-2\sqrt{2x}-2\sqrt{10}\)

\(=\sqrt{x}\left(\sqrt{x}+\sqrt{5}\right)-2\sqrt{2}\left(\sqrt{x}+\sqrt{5}\right)\)

\(=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-2\sqrt{2}\right)\)

\(=\left(\frac{4-\sqrt{10}}{\sqrt{2}}+\sqrt{5}\right)\left(\frac{4-\sqrt{10}}{\sqrt{2}}-2\sqrt{2}\right)\)

\(=\left(2\sqrt{2}-\sqrt{5}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}-2\sqrt{2}\right)\)

\(=2\sqrt{2}.\left(-\sqrt{5}\right)=-2\sqrt{10}\)

19 tháng 6 2019

2, a,  Để đồ thị h/s  đi qua gốc tọa độ thì x=y=0

Ta có: \(-2m-1=0\Leftrightarrow m=\frac{-1}{2}\)

b, giao điểm của h/s y=x-2m-1 với trục hoành A(2m+1;0) với trục tung B(0;-2m-1)

Có: OA=2m+1; OB=|-2m-1|=2m+1

Áp dụng hệ thức lượng trong tam giác vuông coS:

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(2m+1\right)^2}+\frac{1}{\left(2m+1\right)^2}=\frac{2}{\left(2m+1\right)^2}\)

\(\Leftrightarrow\frac{\left(2m+1\right)^2}{2}=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)

\(\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2m+1=1\\2m+1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=-1\end{cases}}}\)

c, Hoành độ trung điểm I của AB là: \(x_I=\frac{x_A+x_B}{2}=\frac{2m+1}{2}\)

Tung độ trung điểm I của AB: \(y_I=\frac{y_A+y_B}{2}=\frac{-\left(2m+1\right)}{2}\)

Ta có: \(y_I=-x_I\)=> quỹ tích trung điểm I của AB là đường thẳng y=-x