Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Sửa đề \(x^3y-2x^2y+xy\)
\(=y\left(x^3-2x^2+x\right)\)
\(=x\cdot y\cdot\left(x^2-2x+1\right)\)
\(=xy\left(x-1\right)^2\)
b: Sửa đề: \(x^2-9-2xy+y^2\)
\(=\left(x^2-2xy+y^2\right)-9\)
\(=\left(x-y\right)^2-9\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
Bài 2:
a: ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)
b: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)
\(=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}-\dfrac{x^2-1}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{2x+6-x-5}{x+3}\)
\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)
\(=\dfrac{x^2-3x-2x-6-x^2+1}{x-3}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{-5x-5}{\left(x-3\right)\left(x+1\right)}=-\dfrac{5\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}=-\dfrac{5}{x-3}\)
c: \(x^2-x-2=0\)
=>\(\left(x-2\right)\left(x+1\right)=0\)
=>\(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Thay x=2 vào A, ta được:
\(A=\dfrac{-5}{2-3}=\dfrac{-5}{-1}=5\)
Câu 2:
a: ĐKXĐ: \(x\notin\left\{0;2\right\}\)
b: Sửa đề: \(A=\left(\dfrac{2x-x^2}{2x^2+8}-\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\left(\dfrac{2}{x^2}-\dfrac{x-1}{x}\right)\)
\(=\left(\dfrac{2x-x^2}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{2-x\left(x-1\right)}{x^2}\)
\(=\left(\dfrac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{2-x^2+x}{x^2}\)
\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x^2+4\right)\left(x-2\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{x^3-2x^2-2x^2+4x+4x^2}{2\left(x^2+4\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x^3+4x}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)\left(x+1\right)}{2\left(x^2+4\right)\cdot x^2}=\dfrac{x+1}{2x}\)
c: Khi x=2024 thì \(A=\dfrac{2024+1}{2\cdot2024}=\dfrac{2025}{4048}\)
Câu 1:
a: \(25x^2\left(x-3y\right)-15\left(3y-x\right)\)
\(=25x^2\left(x-3y\right)+15\left(x-3y\right)\)
\(=\left(x-3y\right)\left(25x^2+15\right)\)
\(=\left(x-3y\right)\cdot5\cdot\left(5x^2+3\right)\)
b: \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=\left(x^4-x^2\right)-\left(4x^2-4\right)\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
a: ĐKXĐ: x<>1; x<>-1
b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c: Để A nguyên thì x+1-2 chia hết cho x+1
=>\(x+1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{0;-2;-3\right\}\)
a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\)
b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)
\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)
\(a,ĐK:x\ne-3;x\ne0;y\ne0\\ b,A=\dfrac{1}{x^2\left(x+3\right)+y^2\left(x+3\right)}=\dfrac{1}{\left(x^2+y^2\right)\left(x+3\right)}\\ x=y=0\Leftrightarrow A\in\varnothing\)
a) ĐKXĐ: \(x\ne\pm1\)
b) \(A=\dfrac{x^3-1}{x^2-1}\cdot\left(\dfrac{1}{x-1}-\dfrac{x+1}{x^2+x+1}\right)\left(dkxd:x\ne\pm1\right)\)
\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\left[\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=\dfrac{x^2+x+1}{x+1}\cdot\dfrac{x^2+x+1-\left(x^2-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1-x^2+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x+2}{x^2-1}\)
c) Có: \(\left|x+3\right|=1\Leftrightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\left(tmdk\right)\)
+) Với \(x=-2\), thay vào \(A\), ta được:
\(A=\dfrac{-2+2}{\left(-2\right)^2-1}=0\)
+) Với \(x=-4\), thay vào \(A\), ta được:
\(A=\dfrac{-4+2}{\left(-4\right)^2-1}=-\dfrac{2}{15}\)
\(\text{#}Toru\)
a: ĐKXĐ: x<>1; x<>-1
b: \(P=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\)
c: Để P=1/2 thì 1/2(x+1)=1/2
=>x+1=1
=>x=0