√x + x

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(1+2\sqrt{x}+x=\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot1+1^2=\left(\sqrt{x}+1\right)^2\)

b: \(a+2\sqrt{a}+1=\left(\sqrt{a}\right)^2+2\cdot\sqrt{a}\cdot1+1^2=\left(\sqrt{a}+1\right)^2\)

d: \(x-2\sqrt{xy}+y=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\sqrt{y}+\left(\sqrt{y}\right)^2\)

\(=\left(\sqrt{x}-\sqrt{y}\right)^2\)

e: \(x^2-1=x^2-1^2=\left(x-1\right)\left(x+1\right)\)

f: \(9x^2-1=\left(3x\right)^2-1^2=\left(3x-1\right)\left(3x+1\right)\)

g: \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)

h: \(1-x\sqrt{x}=1^3-\left(\sqrt{x}\right)^3=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)

i: \(x\sqrt{x}+1=\left(\sqrt{x}\right)^3+1^3=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)

j: \(a\sqrt{a}-1=\left(\sqrt{a}\right)^3-1^3=\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)\)

k: \(x\sqrt{x}-8=\left(\sqrt{x}\right)^3-2^3=\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)\)

l: \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)

12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

14 tháng 10 2018

\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}\)

\(=xyz.\left [ \frac{1}{yz(1+x^2)}+\frac{2}{xz(1+y^2)}+\frac{3}{xy(1+z^2)} \right ]\)

\(=xyz.\left [ \frac{1}{yz+x(x+y+z)}+\frac{2}{xz+y(x+y+z)}+\frac{3}{xy+z(x+y+z)} \right ]\)

\(=xyz.\left [ \frac{1}{(x+y)(x+z)}+\frac{2}{(x+y)(y+z)}+\frac{3}{(x+z)(y+z)} \right ]\)

\(=xyz.\frac{y+z+2(z+x)+3(x+y)}{(x+y)(y+z)(z+x)}=\frac{xyz(5x+4y+3z)}{(x+y)(y+z)(z+x)}\)

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Lời giải:

Đặt \(\frac{1}{x-1}=a; \frac{1}{y-1}=b\) thì HPT trở thành:

\(\left\{\begin{matrix} a-3b=-1\\ 2a+4b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{2}\\ b=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x-1}=\frac{1}{2}\\ \frac{1}{y-1}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=y=3\)

Vậy HPT có nghiệm $(x,y)=(3,3)$

13 tháng 6 2016

\(x^2+6x+5=0\)

<=>\(x^2+x+5x+5=0\)

<=>\(x\left(x+1\right)+5\left(x+1\right)=0\)

<=>\(\left(x+1\right)\left(x+5\right)=0\hept{\begin{cases}x+1=0< =>x=-1\\x+5=0< =>x=-5\end{cases}}\)bấm máy thử nghiệm đc mà .Bài này lớp 8 mà đâu phải lớp 9

13 tháng 6 2016

x^2+6x+5=0

<=> x^2+x+5x+5=0

<=>x(x+1)+5(x+1)=0

<=> (x+5)(x+1)=0

=> x+5=0 hoặc x+1=0 <=> x=-5 hoặc x=-1