K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

somebody help me 

27 tháng 7 2019

\(1,2x^2-3x-2\) 

\(=2x^2-4x+x-2\)

\(=2x\left(x-2\right)+\left(x-2\right)\) 

\(=\left(2x+1\right)\left(x-2\right)\) 

\(2,4x^2-7x-2\)

\(=4x^2-8x+x-2\) 

\(=4x\left(x-2\right)+x-2\)

\(\left(4x+1\right)\left(x-2\right)\)

16 tháng 3 2018

29 tháng 8 2017

17 tháng 7 2021

a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

 

a) Ta có: \(x^4+2x^3-4x-4\)

\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)

9 tháng 1 2018

1)   \(3x^2+2x-1\)

\(=3x^2+3x-x-1\)

\(=3x\left(x+1\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-1\right)\)

2)   \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x+2x+3x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

3)   \(x^4+2x^2-3\)

\(=\left(x^2+1\right)^2-4\)

\(=\left(x^2+1-2\right)\left(x^2+1+2\right)\)

\(=\left(x^2-1\right)\left(x^2+3\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)

4)   \(ab+ac+b^2+2bc+c^2\)

\(=a\left(b+c\right)+\left(b+c\right)^2\)

\(=\left(b+c\right)\left(a+b+c\right)\)

1, \(3x^2+2x-1\)

\(=3x^2+3x-x-1\)

\(=3x\left(x+1\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-1\right)\)

2, \(x^3+6x^2+11x+6\)

\(=\left(x^3+3x^2\right)+\left(3x^2+9x\right)+\left(2x+6\right)\)

\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

20 tháng 9 2020

 .\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)

=\(a\left(b^2-2bc+c^2-a^2\right)+b\left(a^2+2ac+c^2-b^2\right)+c\left(a^2-2ab+b^2-c^2\right)\)

=\(a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(a+c\right)^2-b^2\right]+=c\left[\left(a-b^2\right)-c^2\right]\)

=\(a\left(c-b+a\right)\left(a+b-c\right)+b\left(a+c-b\right)\left(a+b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

=\(\left(a+c-b\right)\left[a\left(c-b+a\right)+b\left(a+b+c\right)+c\left(a-b-c\right)\right]\)

=\(\left(a+c-b\right)\left(b+a-c\right)\left(c+b-a\right)\)

24 tháng 4 2019

a3 ( c - b2 ) + b3 ( a - c2 ) + c3 ( b - a2 ) + abc ( abc - 1 )

= a3c - a3b2 + b3a - b3c2 + c3b - c3a2 + a2b2c2 - abc

= a2b2c2 - b3c2 - ( a2c3 - bc3 ) - ( a3b2 - ab3 ) + ( a3c - abc )

= b2c2 . ( a2 - b ) - c3 ( a2 - b ) - ab2 ( a2 - b ) + ac ( a2 - b ) 

= ( a2 - b ) ( b2c2 - c3 - ab2 + ac )

= ( a2 - b ) ( b2 - c ) ( c2 - a )

26 tháng 1 2019

a) (a-b)(b-c)(a-c).

b) (a-b)(b-c)(a - c)(a + b + c).