K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

a) Áp dụng công thức: \(a+b+c=0\Leftrightarrow a^3+b^3+c^3=3abc\)

Đặt \(\left\{{}\begin{matrix}x=a-b\\y=b-c\\z=c-a\end{matrix}\right.\)

Ta có: \(x+y+z=a-b+b-c+c-a=0\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

Thay vào biểu thức trên, ta được: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Vậy ...

6 tháng 9 2017

b) Tương tự câu a

Đặt \(\left\{{}\begin{matrix}a+b-2c=x\\b+c-2a=y\\c+a-2b=z\end{matrix}\right.\)(*)

Ta có: \(x+y+z=a+b-2c+b+c-2a+c+a-2b=0\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

Thay (*) vào biểu thức trên, ta được: \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)

Vậy ...

12 tháng 8 2018

Đặt \(a+b-2c=x,b+c-2a=y,c+a-2b=z\)

\(\Rightarrow x+y+z=0\)

Chắc bạn biết: \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Vậy \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)

Chúc bạn học tốt.

12 tháng 8 2018

Đặt:  \(a+b-2c=x;\)   \(b+c-2a=y;\)\(c+a-2b=z\)

=>   \(x+y+z=0\)

=>  \(x^3+y^3+z^3=3xyz\)

Thay trở lại ta được:

\(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)

\(=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)

24 tháng 9 2019

Giúp tuii với huhuu

18 tháng 12 2018

Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)

\(=1-4x^2-x\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x\)

\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)

\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)

\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)

\(=\left(1-x\right)\left(x^2+5x+1\right)\)

18 tháng 12 2018

\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)

\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)

\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)

\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)

\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)

\(=\left(a-b\right)^3\left(a+b\right)\)

b: \(=\left(x^2+4x-3\right)^2-2x\left(x^2+4x-3\right)-3x\left(x^2+4x-3\right)+6x^2\)

\(=\left(x^2+4x-3\right)\left(x^2+4x-3-2x\right)-3x\left(x^2+4x-3-2x\right)\)

\(=\left(x^2+2x-3\right)\left(x^2+4x-3-3x\right)\)

\(=\left(x^2+x-3\right)\left(x+3\right)\left(x-1\right)\)

c: \(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+\left(c-a\right)^3\)

\(=a^3-3a^2b+3ab^2-3b^2c+3bc^2-c^3+c^3-3a^2c+3ac^2-a^3\)

\(=-3a^2b+3ab^2-3b^2c+3bc^2-3a^2c+3ac^2\)

\(=-3\left(a^2b-ab^2+b^2c-bc^2+a^2c-ac^2\right)\)

 

10 tháng 10 2016

a)x2+2xy+y2-x-y-12

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

Đặt \(t=x+y\) ta có:

\(t^2-t-12=t^2+3t-4t-12\)

\(=t\left(t+3\right)-4\left(t+3\right)\)

\(=\left(t-4\right)\left(t+3\right)\)

\(=\left(x+y-4\right)\left(x+y+3\right)\)

 

 

10 tháng 10 2016

b sai đề

10 tháng 10 2015

Đặt a+b-c=x;c+a-b=y;b+c-a=z

=>x+y+z=a+b-c+a+b-c+b+c-a=a+b+c

Ta có hăng đẳng thức:(x+y+z)3-x3-y3​-z3=3(x+y)(y+z)(x+z)

=>(a+b+c)3-(a+b-c)3-(c+a-b)3-(b+c-a)3

=(x+y+z)3-x3-y3-z3

=3(x+y)(y+z)(z+x)

=3(a+b-c+c+a-b)(c+a-b+b+c-a)(b+c-a+a+b-c)

=3.2a.2c.2b

=24abc

 


 

23 tháng 10 2017

1+1=??