Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6x+8\)
\(C1\) \(=x^2-4x-2x+8\)
\(=\left(x^2-4x\right)-\left(2x-8\right)\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
\(C2\): \(x^2-6x+8\)
\(=x^2-6x+9-1\)
\(=\left(x^2-6x+9\right)-1\)
\(=\left(x-3\right)^2-1\)
\(=\left(x-3-1\right)\left(x-3+1\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
\(C3\) \(x^2-6x+8\)
\(=x^2-2x-4x+8\)
\(=\left(x^2-2x\right)-\left(4x-8\right)\)
\(=x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
3a) x2 (x-1) - 4x2 + 8x - 4
= x2(x-1) - ( 2x - 2)2
= (x\(\sqrt{x-1}\))2 -( 2x - 2)2
= (x\(\sqrt{x-1}\)- 2x+2) ( x\(\sqrt{x-1}\)+ 2x - 2)
3b) = x3 +33 + (x+3) (x-9)
= (x + 3)( x2 - 3x + 9) + (x+3)(x-9)
= (x+3)(x2 -2x) = (x + 3)(x - 2)x
\(x^2\) - \(x\) - 121
= (\(x^2\) - \(2.x.\frac{1}{2}\) + \(\frac{1}{4}\) ) - \(\frac{1}{4}\) - 121
= (\(x\) - \(\frac{1}{2}\) )2 - \(\frac{485}{4}\)
= (\(x\) - \(\frac{1}{2}\) - \(\frac{\sqrt{485}}{2}\) ) (\(x\) - \(\frac{1}{2}\) + \(\frac{\sqrt{485}}{2}\) )
= (\(x\) - \(\frac{1+\sqrt{485}}{2}\) ) (\(x\) - \(\frac{1-\sqrt{485}}{2}\) )
\(x^2-x-121\)
\(=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}-121\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{485}{4}\)
\(=\left(x-\frac{1}{2}-\frac{\sqrt{485}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{485}}{2}\right)\)
\(=\left(x-\frac{1+\sqrt{485}}{2}\right)\left(x-\frac{1-\sqrt{485}}{2}\right)\)
\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)
=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)
bài 2 :
\(a,x^2-2x-8=x^2-4x+2x-8\)
\(=x\left(x-4\right)+2\left(x-4\right)\)
\(=\left(x+2\right)\left(x-4\right)\)
\(b,2x^2+7x+3=2x^2+6x+x+3\)
\(=2x\left(x+3\right)+\left(x+3\right)\)
\(=\left(2x+1\right)\left(x+3\right)\)
Bài 2 :
\(a,x^2-2x-8\)
\(=x^2-4x+2x-8\)
\(=x\left(x-4\right)+2\left(x-4\right)\)
\(=\left(x+2\right)\left(x-4\right)\)
\(b,2x^2+7x+3\)
\(=2x^2+6x+x+3\)
\(=2x\left(x+3\right)+\left(x+3\right)\)
\(=\left(2x+1\right)\left(x+3\right)\)
\(c,3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(3x-1\right)\left(x-2\right)\)
\(d,4x^2-4-15\)
\(=4x^2-19\)
câu còn lại tự làm nha
Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)
Ta có:
(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)
= (4k+4).2
=8.(k+1)
Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8
\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)
bài 1 : \(a^2-b^2-4ab+4\)
\(=\left(a-b\right)\left(a+b\right)-4\left(ab-1\right)\)