Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
b, \(1-9x+27x^2-27x^3=-\left(3x-1\right)^3\)
Mình có làm ở câu dưới rồi . Bạn tham khảo link :
https://olm.vn/hoi-dap/detail/231817932107.html
a. x3 - 3x2 + 3x - 1
= (x-1)3
b. (x+y)2 - 4x2
=(x+y-4x)(x+y+4x)
c. 27x3 + 1/8
= (3x)3 +(1/2)3
=(3x+ 1/2) (9x - 3x.1/2 - 1/4)
d. ( x+y)3 - (x-y)3
= [(x+y)-(x-y)] [(x+y)2 + (x+y)(x-y) + (x-y)2]
=(x+y-x+y)[x2+2xy+y2+x2-y2+x2-2xy+y2)
=2y . (3x2+y2)
Mấy câu này ko biết đúng hay sai :{
a) 5x - 15y = 5(x - 3y)
b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y
= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y
= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y
c) 14x2y2 - 21xy2 + 28x2y
= 7xy.xy - 7xy.3y + 7xy.4x
= 7xy(xy - 3y + 4x)
= 7xy[(xy - 3y) + 4x]
= 7xy[y(x - 3) +4x]
d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)
= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )
= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]
e) x3 - 3x2 + 3x - 1
= x2.x - 3x.x + 3.x - 1
= x(x2-3x+3) - 1
g) 27x3 + \(\dfrac{1}{8}\)
= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)
= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))
h) (x+y)3 - (x-y)3
= 2(3x2y) + 2y3
f) (x+y)2 - 4x2
= -3x2 + y(2x + y)
a) Ta có: \(x^2+2x+1\)
\(=x^2+2\cdot x\cdot1+1^2\)
\(=\left(x+1\right)^2\)
b) Ta có: \(1-2y+y^2\)
\(=y^2-2\cdot y\cdot1+1^2\)
\(=\left(y-1\right)^2\)
c) Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-x^2-2x^2+2x+x-1\)
\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1\right)\)
\(=\left(x-1\right)^3\)
d) Ta có: \(27+27x+9x^2+x^3\)
\(=x^3+3x^2+6x^2+18x+9x+27\)
\(=x^2\left(x+3\right)+6x\left(x+3\right)+9\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+6x+9\right)\)
\(=\left(x+3\right)^3\)
e) Ta có: \(8-125x^3\)
\(=2^3-\left(5x\right)^3\)
\(=\left(2-5x\right)\left(4+10x+25x^2\right)\)
f) Ta có: \(64x^3+\frac{1}{8}\)
\(=\left(4x\right)^3+\left(\frac{1}{2}\right)^3\)
\(=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)
g) Ta có: \(1-x^2y^4\)
\(=1^2-\left(xy^2\right)^2\)
\(=\left(1-xy^2\right)\left(1+xy^2\right)\)
a) \(x^2+2x+1=x^2+2x.1+1^2=\left(x+1\right)^2\)
b) \(1-2y+y^2=1^2-2y.1+y^2=\left(1-y\right)^2\)
c) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
d) \(27+27x+9x^2+x^3=3^3+3.3^2x+3.3x^2+x^3=\left(3+x\right)^3\)
e) \(8-125x^3=2^3-\left(5x\right)^3=\left(2-5x\right)\left[2^2+2.5x+\left(5x\right)^2\right]=\left(2-5x\right)\left(4+10x+25x^2\right)\)
f) \(64x^3+\frac{1}{8}=\left(4x\right)^3+\left(\frac{1}{2}\right)^3=\left(4x+\frac{1}{2}\right)\left[\left(4x\right)^2-4x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)
Ko chắc ạ!
\(x^3+\frac{1}{x^3}=x^3+\left(\frac{1}{x}\right)^3=\left(x+\frac{1}{x}\right)\left(x^2-x+\frac{1}{x^2}\right)\)( x khác 0 )
\(-x^3+9x^2-27x+27=-\left(x^3-9x^2+27x-27\right)=-\left(x-3\right)^3\)
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)
Bài 8:
b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3
= (1+2x2y)(1-2x2y+4x4y2)
e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)
= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))
Bài 9:
c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3
= (1-3x)3
d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)
= (x+\(\dfrac{1}{2}\))3
f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)
= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)
a) \(x^3+6x^2+12x+8\)
\(=\left(x+2\right)^3\)
b) \(x^3-3x^2+3x-1\)
\(=\left(x-1\right)^3\)
c) \(1-9x+27x^2-27x^3\)
\(=-\left(27x^3-27x^2+9x-1\right)\)
\(=-\left(3x-1\right)^3\)
a) 5x-15y=5x-3.5.y=5(x-3y)
c) 14xy(xy+28x)
d) \(\dfrac{2}{7}\left(3x-1\right)\left(x-1\right)\)
e) (x-1)3
f) (x+y-2x)(x+y+2x)=(y-x)(3x+y)
g) (3x+\(\dfrac{1}{2}\))(9x2+\(\dfrac{3}{2}x\)+\(\dfrac{1}{4}\))
h) (x+y-x+y)\(\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
2a)
(x+1)(x2+2x)=0
(x+1)x(x+2)=0
\(\left[{}\begin{matrix}x+1=0\\x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\)
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, ĐK x >= 0
\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(-4x^2-4x+10=-\left(4x^2+4x+1\right)+11\)
\(=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11;12 xem lại đề
13, \(-x^3+6xy^2-12xy^2+8y^3=-\left(x^3-6xy^2+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
Trả lời:
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, \(x-2\sqrt{x}-3\left(ĐK:x\ge0\right)\)
\(=x-3\sqrt{x}+\sqrt{x}-3=\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(10-4x-4x^2=-\left(4x^2+4x-10\right)=-\left(4x^2+4x+1-11\right)=-\left[\left(2x+1\right)^2-11\right]\)
\(=-\left(2x+1\right)^2+11=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11,sửa đề: \(15x\left(x-3y\right)+20y\left(3y-x\right)=15x\left(x-3y\right)-20y\left(x-3y\right)=5\left(x-3y\right)\left(3x-4y\right)\)
12, \(25x^2-2=\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)\)
13, sửa đề: \(-x^3+6x^2y-12xy^2+8y^3=-\left(x^3-6x^2y+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
Lời giải:
a) $x^3+3x^2y+x+3xy^2+y+y^3$
$=(x^3+3x^2y+3xy^2+y^3)+(x+y)$
$=(x+y)^3+(x+y)=(x+y)[(x+y)^2+1]$
b) $x^3+y(1-3x^2)+x(3y^2-1)-y^3$
$=(x^3-3x^2y+3xy^2-y^3)-(x-y)$
$=(x-y)^3-(x-y)=(x-y)[(x-y)^2-1]=(x-y)(x-y-1)(x-y+1)$
c)
$27x^3+27x^2+9x+1=(3x+1)^3$
d)
$x(x+1)^2+x(x-5)-5(x+1)^2$
$=x(x+1)^2-5(x+1)^2+x(x-5)$
$=(x-5)(x+1)^2+x(x-5)=(x-5)[(x+1)^2+x]$
$=(x-5)(x^2+3x+2)=(x-5)(x+1)(x+2)$