\(x^2\)- 20

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

1/ a/ 5x2 - 20

= 5.(x2 - 4)

=5.(x2 - 22)

=5.(x+2).(x-2)

b/ xy2 - y3 - x + y

= (xy2 - x) - (y3 - y)

= x(y2 - 1) - y(y2 - 1)

= (y2 - 1).(x-y)

= (y-1).(y+1).(x-y)

c/ x2 + 3x - 10

= x2 + 5x - 2x - 10

= x(x+5) - 2(x+5)

= (x+5).(x-2)

d/ x2 - y2 + 12y - 36

= x2 - (y2 - 2.y.6 + 62)

= x2 - (y-6)2

= (x+y-6).(x-y+6).

7 tháng 10 2017

2/ a/ 4x2 - 9 - x(2x-3) = 0

(2x)2 - 32 - x(2x-3) = 0

(2x+3).(2x-3)-x(2x-3) = 0

(2x-3).(2x+3-x) = 0

(2x-3).(x+3) = 0

=> 2x - 3 = 0 hoặc x + 3 = 0

hay x = 3/2 hoặc x = -3

b/ x3 -25x = 0

x(x2 - 25) = 0

x(x+5)(x-5) = 0

=> x = 0 hoặc x+5=0 hoặc x-5 = 0

hay x = 0; x = -5; x = 5

c/ 2(x+5) - x2 - 5x = 0

2(x+5) - x(x+5) = 0

(x+5).(2-x) = 0

=> x + 5 = 0 hoặc 2 - x = 0

hay x = -5 hoặc x = 2

d/ 2x2 + 5x - 3 = 0

2x2 - x + 6x - 3 = 0

x(2x-1) + 3(2x-1) = 0

(2x-1).(x+3) = 0

=> 2x-1=0 hoặc x+3=0

hay x = 1/2 hoặc x = -3

27 tháng 10 2021

helpppppp

5 tháng 11 2017

1.

a. x2 - 2x + 1 = 0

x2 - 2x*1 + 12 = 0

(x-1)2 = 0

............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)

1, Tìm x biết:

a, x2 - 2x +1 = 0

(x-1)2 = 0

x-1 = 0

x = 1. Vậy ...

b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30

25x2 +10x + 1 - (25x2 -9) = 30

25x2 +10x + 1 - 25x2 +9 = 30

10x + 10 =30

10(x+1) = 30

x+1 =3

x = 2. vậy ...

c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5

(x3 - 1) - x(x2 -4) = 5

x3 - 1 - x3 + 4x = 5

4x - 1 = 5

4x = 6

x = \(\dfrac{3}{2}\) .vậy ...

d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15

x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15

x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15

24x + 25 = 15

24x = -10

x = \(\dfrac{-5}{12}\) vậy ...

14 tháng 11 2016

1.

a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)

b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)

2.

a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)

b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ

3. 

\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)

4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

\(A\ge\frac{7}{4}\)

Vậy GTNN của A là 7/4

2 tháng 9 2018

\(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)\)

\(=2x^2-8x+x^2+2x-x-2\)

\(=3x^2-7x-2\)

hk tốt

24 tháng 9 2017

Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@

B1: Phân tích thành nhân tử:

a) \(6x^2+9x=3x\left(2x+3\right)\)

b) \(4x^2+8x=4x\left(x+2\right)\)

c) \(5x^2+10x=5x\left(x+2\right)\)

d) \(2x^2-8x=2x\left(x-4\right)\)

e) \(5x-15y=5\left(x-3y\right)\)

f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)

g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)

\(=\left(x-1-2y\right)\left(x-1+2y\right)\)

h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)

i) \(9x^2-18x+9=\left(3x-3\right)^2\)

k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)

m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)

\(=-\left(2x-y\right)^2\)

n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)

\(=\left(x-31\right)\left(x+1\right)\)

o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)

\(=\left(2+x\right)\left(8+x\right)\)

p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)

\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)

\(=\left(5x-5\right)\left(9x-3\right)\)

24 tháng 9 2017

Bài 1 :

a ) \(6x^2+9x=3x\left(x+3\right)\)

b ) \(4x^2+8x=4x\left(x+2\right)\)

c ) \(5x^2+10x=5x\left(x+2\right)\)

d ) \(2x^2-8x=2x\left(x-4\right)\)

e ) \(5x-15y=5\left(x-3y\right)\)

f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)

h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)

i ) \(9x^2-18x+9=\left(3x-3\right)^2\)

k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)

l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)

m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)

n ) \(\left(x-15\right)^2=x^2-30x+15^2\)

o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)

p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)

Bài 2 :

a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)

b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)

c ) \(2x+x^2-2y-2xy=......................\)

d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)

e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)

f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)

a) = 3x(x-2x+1)

xog a

tốt

Bài làm

a) 3x2 - 6x2 + 3x

= -3x2 + 3x

= 3x( 1 - x )

b) 3x2 + 5x - 3xy - 5y

= ( 3x2 - 3xy ) + ( 5x - 5y )

= 3x( x - y ) + 5( x - y )

= ( x - y )( 3x + 5 )

c) x3 + 2x2 + x

= x( x2 + 2x + 1 )

= x( x2 + 2.x.1 + 12 )

= x( x + 1 )2

d) xy + y2 - x - y

= ( xy - x ) + ( y2 - y )

= x( y - 1 ) + y( y - 1 )

= ( y - 1 )( x +  y )

# Học tốt #

30 tháng 1 2019

a) \(x^3-5x^2+8x-4\)

\(=x^3-2x^2-3x^2+6x+2x-4\)

\(=x^2\left(x-2\right)-3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-3x+2\right)\)

\(=\left(x-2\right)\left(x^2-x-2x+2\right)\)

\(=\left(x-2\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)

\(=\left(x-2\right)\left(x-1\right)\left(x-2\right)\)

30 tháng 1 2019

b) \(A=10x^2-15x+8x-12+7\)

\(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\)

\(A=\left(2x-3\right)\left(5x+4\right)+7\)

Dễ thấy \(\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)=B\)

Vậy để \(A⋮B\)thì \(7⋮\left(2x-3\right)\)

\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x\in\left\{2;1;5;-2\right\}\)

Vậy.......

30 tháng 11 2016

các bạn làm giùm mih đi câu nào cũng được

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)