Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a/ \(x^2+2x+1+z^2+12z+36+1=\left(x+1\right)^2+\left(z+6\right)^2+1>0\) (đpcm)
b/ Câu này đề sai, hoặc là 14y là 4y hoặc là số cuối là 1 số to hơn 16 nhiều
Bài 2:
a/ ĐKXĐ: \(x\ne-5\)
\(\Leftrightarrow12=\left(x-3\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+2x-15=12\)
\(\Leftrightarrow x^2+2x-27=0\Rightarrow x=-1\pm2\sqrt{7}\)
b/ \(\Leftrightarrow\frac{7x}{2}-\frac{x}{3}=-\frac{6}{3}+\frac{1}{2}\)
\(\Leftrightarrow\frac{19}{6}x=-\frac{3}{2}\Rightarrow x=-\frac{9}{19}\)
c/ \(\Leftrightarrow\frac{x}{3}-\frac{x}{4}=6-\frac{1}{5}-\frac{1}{2}+\frac{2}{4}\)
\(\Leftrightarrow\frac{x}{12}=\frac{29}{5}\Rightarrow x=\frac{348}{5}\)
\(a.\left(x^2+\frac{2}{5}y\right)\left(x^2-\frac{2}{5}y\right)\\ =x^4-\frac{4}{25}y^2\)
\(b.\left(2x+y^2\right)^3\\ =8x^3+12x^2y^2+6xy^4+y^6\)
\(c.\left(3x^2-2y\right)^3\\ =27x^6-54x^4y+36x^2y^2-8y^3\)
\(\left(x+4\right)\left(x^2-4x+16\right)\\ =x^3+64\)
\(e.\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\\ =x^6-\frac{1}{27}\)
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
1)
a)
\(2x+5=20+3x\\ \Leftrightarrow2x+5-20-3x=0\\ \Leftrightarrow-x-15=0\\ \Rightarrow x=-15\)
b)
\(2.5y+1.5=2.7y-1.5c\cdot2t-\frac{3}{5}=\frac{2}{3}-t\\ \Leftrightarrow2.5y+1.5-2.7y+3ct+\frac{3}{5}-\frac{2}{3}+t=0\\ \Leftrightarrow-0.2y+\frac{43}{30}+3ct+t=0\)
2)
a)
\(\frac{5x-4}{2}=\frac{16x+1}{7}\\ \Leftrightarrow\frac{35x-28}{14}-\frac{32x+2}{14}=0\\ \Leftrightarrow\frac{35x-28-32x-2}{14}=0\\ \Leftrightarrow\frac{3x-30}{14}=0\\ \Rightarrow3x-30=0\\ \Rightarrow x=10\)
b)
\(\frac{12x+5}{3}=\frac{2x-7}{4}\\ \Leftrightarrow\frac{48x+20}{12}-\frac{6x-21}{14}=0\\ \Leftrightarrow\frac{48x+20-6x+21}{12}=0\\ \Leftrightarrow\frac{42x+41}{12}=0\\ \Rightarrow42x+41=0\\ \Rightarrow x=-\frac{41}{42}\)
3)
a)
\(\left(x-1\right)^2-9=0\\ \Leftrightarrow\left(x-1-3\right)\cdot\left(x-1+3\right)=0\\ \Leftrightarrow\left(x-4\right)\cdot\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-4=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
a)theo C-S: \(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Khi \(x=y\)
b)theo C-S: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
khi x=y=z
c)theo C-S: \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
khi \(\frac{a}{x}=\frac{b}{y}\)
Bài 1:
a) \(25x^4-\frac{1}{9}y^2\)
\(=\left(5x^2\right)^2-\left(\frac{1}{3}y\right)^2\)
\(=\left(5x^2-\frac{1}{3}y\right).\left(5x^2+\frac{1}{3}y\right)\)
c) \(x^2-3\)
\(=x^2-\left(\sqrt{3}\right)^2\)
\(=\left(x-\sqrt{3}\right).\left(x+\sqrt{3}\right)\)
d) \(x^2-16x^2y^2z^2\)
\(=x^2-\left(4xyz\right)^2\)
\(=\left(x-4xyz\right).\left(x+4xyz\right)\)
Chúc bạn học tốt!
b, \(\left(x+5\right)y^2-\left(x+5\right)3\)
\(=\left(x+5\right)\left(y^2.3\right)\)