Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
BAI 1
ta co n+6 chia het cho n
ma n chia het cho n
suy ra 6 chia het cho n
ma n la mot so tu nhien nen
ta co n thuoc U(6)=1,2,3,6
vay n bang 1,2,3,6
bai 2
(2n-1).(y+3)=12
suy ra 2n-1 va y+3 thuoc uoc cua 12 =1,12,3,4,6,2
neu 2n-1 =1 suy ra n=1
thi y+3=12 suy ra y=9
neu 2n-1=12 suy ra n=11/2(ko thoa man )
neu 2n-1=3 suy ra n=2
thi y+3=4 suy ra y=1
neu 2n-1=4 ruy ra n=5/2( ko thoa man )
neu 2n-1=6 suy ra n=7/2( ko thoa man )
neu 2n-1=2 suy ra n=3/2 ( ko thoa man )
vay cac cap so n :y can tim la (2;1),(1;9)
Bai 2:a)
Goi d thuôc UC(n+1;3n+4)
Suy ra:3n+4chia hêt cho d
n+1chia hêt cho d suy ra 3.(n+1)chia hêt cho d =3n+3 chia hêt cho d
Suy ra :3n +4 -3n -3
chia hêt cho d suy ra 1chia hêt cho d suy ra d = 1
VÂY n+1 ; 3n+1 la 2 sô nguyên tô cung nhau
a + 6 ⋮ a + 3 (đk a ≠0; a \(\in\) Z)
a + 3 + 3 ⋮ a + 3
3 ⋮ a + 3
a + 3 \(\in\) Ư(3) = {- 3; -1; 1; 3}
a \(\in\) {-6; -4; -2; 0}
Bài 2:
n - 3 ⋮ n - 1 (đk n \(\ne\) 1)
n - 1 - 2 ⋮ n - 1
2 ⋮ n - 1
n - 1 \(\in\) Ư(2) = {-2; -1; 1; 2}
n \(\in\) {-1; 0; 2; 3}
Bài 1 :
\(\left(7^{2023}-5.7^{2022}\right):7^{2020}\)
\(=7^{2023}:7^{2020}-5.7^{2022}:7^{2020}\)
\(=7^{2023-2020}-5.7^{2022-2020}\)
\(=7^3-5.7\)
\(=7\left(7^2-5\right)\)
\(=7\left(49-5\right)\)
\(=7.44=308\)
Bài 2 : \(n+6⋮n+2\left(n\inℕ\right)\)
\(\Rightarrow n+6-\left(n+2\right)⋮n+2\)
\(\Rightarrow n+6-n-2⋮n+2\)
\(\Rightarrow4⋮n+2\)
\(\Rightarrow n+2\in U\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow n\in\left\{-1;0;2\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\left(n\inℕ\right)\)
Bài 3:
3a, \(19^{8^{1945}}\) Vì 8 ⋮ 2 ⇒ 81945 ⋮ 2 ⇒ 81945 = 2k (k \(\in\) N*)
Ta có: \(19^{8^{1945}}\) = \(19^{2k}\) = \((\)192)k = \(\overline{...1}\)k = 1
3b, 372023 = (374)505. 373 = \(\overline{...1}\)505.\(\overline{..3}\) = \(\overline{...3}\)
3c, 53997 = (534)249.53 = \(\overline{...1}\)249. 53 = \(\overline{...3}\)
3d, 84567 = (842)283.84 = \(\overline{...6}\)283 . 84 = \(\overline{...4}\)
\(\left(n-6\right)^2=9\)
\(\left(n-6\right)^2=3^2\)
\(\Rightarrow n-6=3\)
\(\Rightarrow n=9\)
vay \(n=9\)
(n-6)2 bằng 9
(n-6)2 bằng 32
n-6 bằng 3
n bằng 3+6
n bằng 9