Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi vận tốc ban đầu của người đó là x (km/h) (x > 0).
Thời giạn dự định người đó đi hết quãng đường là 90/x (h).
Quãng đường người đó đi được sau 1 giờ là x (km).
Quãng đường còn lại người đó phải tăng tốc là 90 – x (km).
Vận tốc của người đó sau khi tăng tốc là x + 4 (km/h).
Thời gian người đó đi hết quãng đường còn lại là (h).
Theo đề bài ta có phương trình:
Vậy vận tốc lúc đầu của người đó là 36 km/h.
Đổi \(30p=\frac{1}{2}h\)
Gọi vận tốc dự định của người đó là x (km/h) (x > 0)
\(\Rightarrow\) thời gian dự định của người đó là : \(t_{dđ}=\frac{S_{AB}}{v_{dđ}}=\frac{50}{x}\) (h)
Quãng đường ng đó di chuyển được sau 2 giờ là : \(2x\) (km)
\(\Rightarrow\)Quãng đường còn lại là \(50-2x\) (km)
Người đó phải tăng vận tốc thêm 2km/h trên quãng đường còn lại để đến B đúng dự định nên ta có PT :
\(\frac{50}{x}=2+\frac{1}{2}+\frac{50-2x}{x+2}\)
\(\Leftrightarrow\frac{50}{x}=\frac{5}{2}+\frac{50-2x}{x+2}\)
\(\Leftrightarrow\frac{50}{x}=\frac{5x+10+100-4x}{2\left(x+2\right)}\Leftrightarrow\frac{50}{x}=\frac{x+110}{2x+4}\)
\(\Leftrightarrow x^2+110x-100x-200=0\)
\(\Leftrightarrow x^2+10x-200=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+20\right)\Rightarrow\orbr{\begin{cases}x=10\\x=-20\left(l\right)\end{cases}}\)
Vậy vận tốc ban đầu của xe là 10 km/h
Quãng đường AB dài là:
60 x 2 = 120 (km)
Nếu người đó đi với vận tốc 40km/h thì cần thời gian là:
120: 40 = 3 giờ
Lời giải:
Gọi vận tốc dự định ban đầu là $a$ km/h
Thời gian dự định: $\frac{120}{a}$ (h)
Người đó đi 1/3 quãng đường đầu với thời gian $\frac{120}{a}:3=\frac{40}{a}$ (h)
Nghỉ thêm 40' nghĩa là nghỉ $\frac{2}{3}$ h
$120(1-\frac{1}{3})=80$ km còn lại đi với thời gian: $\frac{80}{a+10}$ (h)
Ta có:
$\frac{40}{a}+\frac{2}{3}+\frac{80}{a+10}=\frac{120}{a}$
$\Leftrightarrow \frac{2}{3}+\frac{80}{a+10}=\frac{80}{a}$
Giải pt trên với đk $a>0$ ta có: $a=30$ (km/h)
Gọi vận tốc dự địnhlà x
Thời gian dự kiến là 120/x
Theo đề, ta có: \(\dfrac{40}{x}+\dfrac{2}{3}+\dfrac{80}{x+10}=\dfrac{120}{x}\)
=>\(\dfrac{80}{x+10}-\dfrac{80}{x}=\dfrac{-2}{3}\)
=>\(\dfrac{40}{x}-\dfrac{40}{x+10}=\dfrac{1}{3}\)
=>\(\dfrac{40x+400-40x}{x^2+10x}=\dfrac{1}{3}\)
=>x^2+10x=1200
=>x^2+10x-1200=0
=>(x+40)(x-30)=0
=>x=30
GỌI VẬN TỐC BAN ĐẦU LÀ V ,THỜI GIAN DỰ ĐỊNH LÀ T, THỜI GIAN ĐI QUANG ĐƯỜNG CON LẠI LÀ T' (ĐK V,T,T'>0)
S=V*T=V*2+(V+2)*T'
\(\Rightarrow V\cdot T=2V+\left(V+2\right)\cdot T'\)
TA LẠI CÓ :T'=T-2-0,5
\(\Rightarrow V\cdot T=2V+\left(V+2\right)\cdot\left(T-2-0,5\right)\)
\(\Rightarrow2T-5=0,5\cdot V\Rightarrow T=\frac{\left(0,5\cdot V+5\right)}{2}\)
MÀ V*T=50\(\Rightarrow V\cdot\frac{\left(0,5V+5\right)}{2}=50\Rightarrow V=10;-20\)
VÌ V>0 V=10...
gọi v là vận tốc bđ
thời gian dự đinh là 50/y
qđ còn lại sau khi đi dk 2h là 50-2v
thời gian đi qđ còn lại là 50-2v/(v+2)
từ giả thiết đề bài cho ta có pt
50-2v/(v+2)+2+30/60=50/v
bạn tự giải pt nha mk hướng dẫn tek thui
10p = 1/6h
Thời gian đi dự định: \(\dfrac{AB}{48}h\)
Thời gian đi thực tế: \(1+\dfrac{1}{6}+\dfrac{AB-48}{48+6}\)\(=\dfrac{7}{6}+\dfrac{AB-48}{54}h\)
Ta có: \(\dfrac{AB}{48}=\dfrac{7}{6}+\dfrac{AB-48}{54}\Leftrightarrow\dfrac{AB}{432}=\dfrac{5}{18}\)
\(\Rightarrow AB=120km\)
Gọi quãng đường AB là a(km)(a>0)
Theo đề bài ta có:
\(\dfrac{a}{48}=\dfrac{1}{6}+1+\dfrac{a-48.1}{48+6}\)
\(\Rightarrow\dfrac{a}{48}=\dfrac{a+15}{54}\)
\(\Rightarrow48a+720=54a\Rightarrow a=120\left(nhận\right)\)
Vậy...
cho mk sửa: D thuộc HC và E là hình chiếu của C thuộc AD