Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{2}\ne\dfrac{-2}{-m}\)
=>\(m^2\ne4\)
=>\(m\notin\left\{2;-2\right\}\)
\(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2y=mx-2m+1\\2x-my=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-m\left(x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\right)=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-x\cdot\dfrac{m^2}{2}+m^2-\dfrac{1}{2}m=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\left(2-\dfrac{m^2}{2}\right)=-m^2+\dfrac{1}{2}m-3m+9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\cdot\dfrac{4-m^2}{2}=-m^2-\dfrac{5}{2}m+9=\dfrac{-2m^2-5m+18}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-2m^2-5m+18}{4-m^2}=\dfrac{2m^2+5m-18}{m^2-4}\\y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{\left(2m+9\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{2m+9}{m+2}\\y=\dfrac{2m+9}{m+2}\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+9m-2m\left(m+2\right)+m+2}{2\left(m+2\right)}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+10m+2-2m^2-4m}{2\left(m+2\right)}=\dfrac{6m+2}{2\left(m+2\right)}=\dfrac{3m+1}{m+2}\end{matrix}\right.\)
Để x,y nguyên thì \(\left\{{}\begin{matrix}2m+9⋮m+2\\3m+1⋮m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m+4+5⋮m+2\\3m+6-5⋮m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5⋮m+2\\-5⋮m+2\end{matrix}\right.\)
=>\(5⋮m+2\)
=>\(m+2\in\left\{1;-1;5;-5\right\}\)
=>\(m\in\left\{-1;-3;3;-7\right\}\)
Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)
=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)
\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)
\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)
=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)
=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)
=>m(5m+4)=18m-9
=>\(5m^2-14m+9=0\)
=>(m-1)(5m-9)=0
=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2x-my=2m\\3x+my=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)x=2m+5\\y=mx-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=mx-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{5m-6}{m^2+3}\end{matrix}\right.\)
Thay vào \(x+y=1-\dfrac{m^2}{m^2+3}\)
\(\Leftrightarrow\dfrac{3m+5}{m^2+3}+\dfrac{5m-6}{m^2+3}=1-\dfrac{m^2}{m^2+3}\)
\(\Leftrightarrow\dfrac{8m-1}{m^2+3}=\dfrac{3}{m^2+3}\)
\(\Leftrightarrow8m-1=3\)
\(\Rightarrow m=\dfrac{1}{2}\)
\(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2x+4my=9m\\4x+4my=32\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=9m-32\\mx+4y=9\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(m^2-4\ne0\Rightarrow m\ne\pm2\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{9m-32}{m^2-4}\\y=\dfrac{9-mx}{4}=\dfrac{8m-9}{m^2-4}\end{matrix}\right.\)
\(x=3y\Rightarrow\dfrac{9m-32}{m^2-4}=\dfrac{3\left(8m-9\right)}{m^2-4}\)
\(\Rightarrow9m-32=3\left(8m-9\right)\)
\(\Rightarrow m=-\dfrac{1}{3}\)
a: Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-y=1\\2x+y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=5\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=x-1=\dfrac{5}{3}-1=\dfrac{2}{3}\end{matrix}\right.\)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2}\ne-\dfrac{1}{m}\)
=>\(m^2\ne-2\)(luôn đúng)
\(\left\{{}\begin{matrix}mx-y=1\\2x+my=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-1\\2x+m\left(mx-1\right)=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-1\\x\left(m^2+2\right)=m+4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{m\left(m+4\right)}{m^2+2}-1=\dfrac{m^2+4m-m^2-2}{m^2+2}=\dfrac{4m-2}{m^2+2}\end{matrix}\right.\)
x+y=2
=>\(\dfrac{m+4+4m-2}{m^2+2}=2\)
=>\(2m^2+4=5m+2\)
=>\(2m^2-5m+2=0\)
=>(2m-1)(m-2)=0
=>\(\left[{}\begin{matrix}2m-1=0\\m-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=2\end{matrix}\right.\)
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
mk sẽ hướng dẩn nha.
phần a của 2 câu : tương tự nhé https://hoc24.vn/hoi-dap/question/621828.html
1b) thế \(x=-1;y=3\) --> m
1c) rút x và y theo m rồi thế vào giải
\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\9m-m^2y-3y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\y=\dfrac{9m-4}{m^2+3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=9+\dfrac{4m+27}{m^2+3}\\y=\dfrac{9m-4}{m^2+3}\end{matrix}\right.\) --> ...
2b) tương tự rút x và y theo m và biện luận
\(\left\{{}\begin{matrix}3x-my=-9\\mx+2y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{my-9}{3}\\m^2y-9m+6y=48\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{my-9}{3}\\y=\dfrac{9m+48}{m^2+6}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\dfrac{9m^2+48m}{m^2+6}-9}{3}\\y=\dfrac{9m+48}{m^2+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-18m}{m^2+6}\\y=\dfrac{9m+48}{m^2+6}\end{matrix}\right.\) --> ...
3c) từ \(x+y=7\Rightarrow y=7-x\) thế vào hệ ta được hệ pt 2 ẩn --> m