Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\Delta A'B'C'~\Delta A"B"C"\)theo tỉ số đồng dạng \(k_1\Rightarrow A'B'=k_1A"B"\)
\(\Delta A"B"C"~\Delta A'B'C\)theo tỉ số \(k_2=>A"B"=k_2A"B"=>AB=\frac{A"B"}{k_2}\)
từ đó suy ra
\(\frac{A'B'}{AB}=\frac{k_1A"B"}{\frac{A"B"}{k_2}}=k_1k_2\Leftrightarrow\Delta A'B'C~\Delta ABC\)theo tỉ số \(k_1k_2\)
B C A E D F H
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm
Bài 1:
Để ΔABC=ΔDEF thì AB=EF; AC=DF
hoặc cũng có thể là BC=EF và \(\widehat{B}=\widehat{E}\)
Bài 2:
a: Xét ΔABH vuông tại H và ΔA'B'H' vuông tại H' có
\(\widehat{B}=\widehat{B'}\)
Do đó: ΔABH\(\sim\)ΔA'B'H'
b: AH/A'H'=AB/A'B'=k
2) Giải phương trình:
\(\frac{2-x}{2017}-1=\frac{1-x}{2018}-\frac{x}{2019}\)
<=> \(\left(\frac{2-x}{2017}-\frac{1-x}{2018}\right)+\left(\frac{x}{2019}-1\right)=0\)
<=> \(\frac{2019-x}{2017.2018}+\frac{x-2019}{2019}=0\)
<=> \(\left(x-2019\right)\left(\frac{1}{2019}-\frac{1}{2017.2018}\right)=0\)
<=> x - 2019 = 0
<=> x = 2019
Bài 1:
TH1: A, D nằm cùng phía với BC
Góc α: Góc giữa C, A, B Góc α: Góc giữa C, A, B Góc β: Góc giữa C, D, B Góc β: Góc giữa C, D, B Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng g: Đoạn thẳng [B, A] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, D] Đoạn thẳng j: Đoạn thẳng [D, C] Đoạn thẳng k: Đoạn thẳng [A, D] Đoạn thẳng l: Đoạn thẳng [D, I] Đoạn thẳng m: Đoạn thẳng [A, A'] Đoạn thẳng n: Đoạn thẳng [D, A'] Đoạn thẳng p: Đoạn thẳng [A', C] B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I
Gọi I là trung điểm của BC. Khi đó theo tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có:
IB = ID = IC
Vậy nên \(\widehat{BDC}=\widehat{BDI}=\frac{\widehat{DIC}}{2}\) (Tính chất góc ngoài) (1)
Trên tia đối của tia IA lấy điểm A' sao cho I là trung điểm AA'.
Tam giác ABC vuông nên ta cũng có IB = IA = IC. Vậy thì IB = IA = IC = IA' hay tam giác ACA' vuông tại C.
Từ đó tương tự như bên trên ta có:
\(\widehat{DAI}=\frac{\widehat{DIA'}}{2};\widehat{CAI}=\frac{\widehat{CIA'}}{2}\)
\(\Rightarrow\widehat{DAC}=\widehat{DAI}-\widehat{CAI}=\frac{\widehat{DIA'}-\widehat{CIA'}}{2}=\frac{\widehat{DIC}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DBC}\)
Hoàn toàn tương tự ta có: \(\widehat{ADB}=\widehat{ACB}\)
TH2: A, D khác phía với BC
Góc β: Góc giữa C, D, B Góc β: Góc giữa C, D, B Góc γ: Góc giữa B, A, C Góc γ: Góc giữa B, A, C Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng g: Đoạn thẳng [B, A] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, D] Đoạn thẳng j: Đoạn thẳng [D, C] Đoạn thẳng k: Đoạn thẳng [A, D] Đoạn thẳng l: Đoạn thẳng [D, I] Đoạn thẳng m: Đoạn thẳng [A, A'] Đoạn thẳng n: Đoạn thẳng [D, A'] Đoạn thẳng p: Đoạn thẳng [A', C] B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) B = (6.06, 3.62) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) C = (8.7, -1.66) Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I Điểm A': A đối xứng qua I
Tương tự như TH1:
Ta có: \(\widehat{DBC}=\frac{\widehat{DIC}}{2}\)
\(\widehat{DAC}=\widehat{DAA'}+\widehat{A'AC}=\frac{\widehat{DIA'}+\widehat{A'IC}}{2}=\frac{\widehat{DIC}}{2}\)
Vậy nên \(\widehat{DAC}=\widehat{DBC}\)
Tương tự \(\widehat{ADB}=\widehat{ACB}\)
Bài 1:
Do BE chia tam giác ABC thành hai tam giác có tỉ số đồng dạng là \(\sqrt{3}\) nên có thể xảy ra các trường hợp sau:
\(\left(1\right)\Delta AEC\sim\Delta EBC;\left(2\right)\Delta AEC\sim\Delta CBE;\left(3\right)\Delta AEC\sim\Delta CEB;\left(4\right)\Delta AEC\sim\Delta ECB\)
(Vì trong các trường hợp còn lại thì tỉ số đồng dạng là \(\frac{EC}{EC}=1\) )
Vì góc \(\widehat{AEC}>\widehat{BCE}\) nên không xảy ta trường hợp (1) và (2); Vì \(\widehat{BEC}>\widehat{EAC}\)nên không xảy ta trường hợp (4)
Do đó chỉ có thể xảy ra trường hợp (3) hay \(\Delta AEC\sim\Delta CEB\Rightarrow\widehat{AEC}=\widehat{BEC}\) và \(\frac{EC}{EB}=\frac{AE}{CE}=\sqrt{3}\)
\(\Rightarrow\widehat{AEC}=\widehat{CEB}=90^o\)
Vậy nên tam giác AEC vuông tại E và \(\frac{AE}{CE}=\sqrt{3}\Rightarrow\widehat{ACE}=60^o;\widehat{CAE}=30^o\)
Vậy tam giác ECB vuông tại E và \(\frac{EC}{EB}=\sqrt{3}\Rightarrow\widehat{CBE}=60^o;\widehat{ECB}=30^o\)
Do đó \(\widehat{CAB}=30^o;\widehat{CBA}=60^o;\widehat{ACB}=90^o.\)
Bài 1:
ĐK: $x\neq 1$
PT \(\Leftrightarrow \frac{x^2+x+1}{(x-1)(x^2+x+1)}-\frac{3x^2}{(x-1)(x^2+x+1)}=\frac{2x(x-1)}{(x-1)(x^2+x+1)}\)
\(\Rightarrow x^2+x+1-3x^2=2x(x-1)\)
\(\Leftrightarrow -4x^2+3x+1=0\Leftrightarrow (1-x)(4x+1)=0\)
Vì $x\neq 1$ nên $x=\frac{-1}{4}$ là nghiệm duy nhất. Đáp án A.
Bài 2: Đáp án A
Bài 3: Đáp án C
Bài 4: ĐK: $x\neq -1; x\neq 0$
PT $\Leftrightarrow 1+\frac{2}{x+1}+1-\frac{2}{x}=2$
$\Leftrightarrow \frac{2}{x+1}-\frac{2}{x}=0$
$\Leftrightarrow \frac{1}{x+1}-\frac{1}{x}=0$
$\Leftrightarrow \frac{-1}{x(x+1)}=0$ (vô lý)
Vậy PT vô nghiệm với mọi $x\neq -1; x\neq 0$
Đáp án C