Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ne\pm m\)
\(\frac{m}{x-m}+\frac{3m^2-4m+3}{m^2-x^2}=\frac{1}{x+m}\)
\(\Leftrightarrow\frac{m\left(x+m\right)}{x^2-m^2}-\frac{3m^2-4m+3}{x^2-m^2}-\frac{x-m}{x^2-m^2}=0\)
\(\Leftrightarrow\frac{mx+m^2-3m^2+4m-3-x+m}{x^2-m^2}=0\)
\(\Leftrightarrow mx+m^2-3m^2+4m-3-x+m=0\)
\(\Leftrightarrow\left(m-1\right)x-2m^2+5m-3=0\)
Với \(m-1=0\Leftrightarrow m=1\), khi đó \(-2m^2+5m-3=0\)
Vậy thì phương trình có vô số nghiệm khác \(\pm1.\)
Với \(m-1\ne0\Leftrightarrow m\ne1\)
Khi đó phương trình có nghiệm duy nhất \(x=\frac{2m^2-5m+3}{m-1}=2m-3\)
KL:
Với \(m=\pm1,\) phương trình vô số nghiệm khác \(\pm1.\)
Với \(m\ne\pm1,\) phương trình có một nghiệm duy nhất \(x=2m-3\)
a/ \(\left(m+1\right)^2x=\left(3m+7\right)x+2+m\)
\(\Leftrightarrow\left[\left(m+1\right)^2-\left(3m+7\right)\right]x=m+2\Leftrightarrow\left(m^2-m-6\right)x=m+2\)
* Với \(m=3\Rightarrow x\in\varnothing\)
* Với \(m=-2\Rightarrow x\in R\)
* Với \(m\ne3;m\ne-2\)\(\Rightarrow x=\frac{m+2}{m^2-m-6}=\frac{m+2}{\left(m+2\right)\left(m-3\right)}=\frac{1}{m-3}\)
KL: ...............................
b/ \(b\left(ax-b+2\right)=2\left(ax+1\right)\)
\(\Leftrightarrow\left(ab-2a\right)x=b^2-2b+2\)
Với \(ab-2a=0\Rightarrow b^2-2b+2=0.x\Leftrightarrow x\in\varnothing\)
Với \(ab-2a\ne0\Rightarrow x=\frac{b^2-2b+2}{ab-2a}\)
KL: ..........................
a/sửa đề đi
b/\(\Leftrightarrow abx-b^2+2b=2ax+2\)
\(\Leftrightarrow ax\left(b-2\right)-b\left(b-2\right)=2\)
\(\Leftrightarrow\left(ax-b\right)\left(b-2\right)=2\)(*)
PT vô nghiệm khi \(\left[{}\begin{matrix}b=2\\ax=b\end{matrix}\right.\)
Vậy để PT có nghiệm thì \(\left\{{}\begin{matrix}b\ne2\\a\ne0\end{matrix}\right.\)
(*)\(\Leftrightarrow ax-b=\frac{2}{b-2}\)
\(\Leftrightarrow ax=\frac{b^2-2b+2}{b-2}\)
\(\Leftrightarrow x=\frac{b^2-2b+2}{ab-2a}\)
(x + 1)(x + 2) = (2 - x)(x + 2)
<=> x2 + 2x + x + 2 = 4 - x2
<=> x2 + 3x + 2 = 4 - x2
<=> x2 + 3x + 2 - 4 + x2 = 0
<=> 2x2 + 3x - 2 = 0
<=> 2x2 + 4x - x - 2 = 0
<=> 2x(x + 2) - (x + 2) = 0
<=> (x + 2)(2x - 1) = 0
<=> x + 2 = 0 hoặc 2x - 1 = 0
<=> x = -2 hoặc x = 1/2
Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.