Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x-6< 0\Leftrightarrow2x>6\Leftrightarrow x>3\)
\(b,5x+2x< 4+25\Leftrightarrow7x< 29\Leftrightarrow x< \frac{29}{7}\)
\(c,-5x+6>8-10+8x\Leftrightarrow-5x-8x>8-10-6\)
\(-13x>-8\Leftrightarrow x< \frac{8}{13}\)
\(d,3x-12\le2-4x\Leftrightarrow3x+4x\le2+12\)
\(\Leftrightarrow7x\le14\Leftrightarrow x\le2\)
\(e,\frac{3\left(x-3\right)}{6}>\frac{2\left(2x-5\right)}{6}+\frac{6}{6}\Rightarrow3x-9>4x-10+6\)
\(\Leftrightarrow3x-4x>-4+9\Leftrightarrow x>-5\)
\(f,3\left(2x-3\right)>1+2\left(2+2x\right)\Leftrightarrow6x-9>1+4+4x\)
\(6x-4x>14\Leftrightarrow2x>14\Leftrightarrow x>7\)
Tự biểu diễn nha!
a) 5 - (x - 6) = 4(3 - 2x)
<=> 5 - x + 6 = 12 - 8x
<=> -x + 8x = 12 - 11
<=> 7x = 1
<=> x = 1/7
Vậy S = {1/7}
b) 2x(x - 3) + 5(x - 3) = 0
<=> (2x + 5)(x - 3) = 0
<=> \(\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)
Vậy S = {-5/2; 3}
c)ĐK: x \(\ne\)1; x \(\ne\)2
\(\frac{3x-5}{x-2}-\frac{2x-5}{x-1}=1\)
<=> \(\frac{\left(3x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(2x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}\)
<=> 3x2 - 8x + 5 - 2x2 + 9x - 10 = x2 - 3x + 2
<=> x2 + x - 5 = x2 - 3x + 2
<=> x2 + x - x2 + 3x = 2 + 5
<=> 4x = 7
<=> x = 7/4
Vậy S = {7/4}
\(\frac{x+2}{5}< \frac{x+2}{3}+\frac{1}{2}\)
\(\Leftrightarrow\frac{6\left(x+2\right)}{30}< \frac{10\left(x+2\right)}{30}+\frac{15}{30}\)
\(\Leftrightarrow\frac{6x+12}{30}< \frac{10x+20}{30}+\frac{15}{30}\)
\(\Leftrightarrow6x+12< 10x+20+15\)
\(\Leftrightarrow6x-10x< 20+15-12\)
\(\Leftrightarrow-4x< 23\)
\(\Leftrightarrow x>-\frac{23}{4}\)
Vậy tập nghiệm của bất phương trình là \(x>-\frac{23}{4}\)
\(\frac{x+2}{4}-x< \frac{1}{3}\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{12}-\frac{12x}{12}< \frac{4}{12}\)
\(\Leftrightarrow\frac{3x+6}{12}-\frac{12x}{12}< \frac{4}{12}\)
\(\Leftrightarrow3x+6-12x< 4\)
\(\Leftrightarrow3x-12x< 4-6\)
\(\Leftrightarrow-9x< -2\)
\(\Leftrightarrow x>\frac{2}{9}\)
Vậy tập nghiệm của bất phương trình là \(x>\frac{2}{9}\)
\(\frac{2x-1}{x+2}< 0\)( ĐKXĐ : \(x\ne-2\))
Xét hai trường hợp
1/ \(\hept{\begin{cases}2x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-2\end{cases}}\Rightarrow-2< x< \frac{1}{2}\)
2/ \(\hept{\begin{cases}2x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -2\end{cases}}\)( loại )
Vậy tập nghiệm của bất phương trình là \(-2< x< \frac{1}{2}\)
1) \(\frac{6x-2}{8}-\frac{3x-6}{8}-\frac{8}{8}>\frac{20-12x}{8}\)
\(<=>6x-2-3x+6-8>20-12x\)
\(<=>15x>24\)
\(<=>x>\frac{24}{15}\)
2) a)|-2,5x|=x-12
TH1: x>=0 => |-2,5x|=2,5x
2,5x=x-12 <=> x=-8 (loại)
TH2: x<0 => |-2,5x|=-2,5x
-2,5x=x-12 <=> x= 3,42857... (loại)
Vậy không có giá trị x thoả mãn
b) |5x|-3x-2=0
TH1: 5x>=0 => x>=0 => |5x|=5x
5x-3x-2 = 0 <=> x=1 (chọn)
TH2: 5x<0 => x<0 => |5x|=-5x
-5x-3x-2=0 <=> x=-0,25 (chọn)
Vậy x=1 hoặc x=-0,25
c) |-2x|+x-5x-3=0
TH1: -2x>=0 <=> x<=0 <=> |-2x|=-2x
-2x+x-5x-3=0 <=> x=-3 (chọn)
TH2: -2x<0 <=> x>0 <=> |-2x|=2x
2x+x-5x-3=0 <=> x=-1,5 (loại)
Vậy x=-3
3) a) Ta có: -x2+4x-4=-(x-2)2<=0
=> -x2+4x-4-5<=-5
=> -x2+4x-9<=-5
b) Ta có: x2-2x+1=(x-1)2>=0
=> x2-2x+1+8>=8
=> x2-2x+9>=8
Bài 2 :
|-2/5x| = x - 12
2/5x = x - 12
2/5x - x = -12
=> -3/5x = -12
=> x =-12 : -3/5
=>x= 20
Bài 1:
a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)
\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)
\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)
Suy ra: \(12x-45-12x^2+45x=0\)
\(\Leftrightarrow-12x^2+57x-45=0\)
\(\Leftrightarrow-12x^2+12x+45x-45=0\)
\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)
\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)
mà \(-3\ne0\)
nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)
b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)
\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)
Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)
\(\Leftrightarrow-x^2+16x-39=0\)
\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)
\(\Leftrightarrow x^2-13x-3x+39=0\)
\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)
Vậy: Tập nghiệm S={3;13}
c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)
\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)
Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)
\(\Leftrightarrow-21x^2+26x+11=0\)
\(\Leftrightarrow-21x^2-7x+33x+11=0\)
\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)
a) \(\frac{1-2x}{4}-2< \frac{1-5x}{8}+x\)
\(\Leftrightarrow\frac{2\left(1-2x\right)}{8}-\frac{16}{8}< \frac{1-5x}{8}+\frac{8x}{8}\)
\(\Leftrightarrow2-4x-16< 1-5x+8x\)
\(\Leftrightarrow-4x-14< 1-3x\)
\(\Leftrightarrow-x< 15\)
\(\Leftrightarrow x>-15\)
Vậy bất phương trình có tập nghiệm là: S ={x| x > -15}
b) \(\frac{1-x}{3}< \frac{x+4}{2}\)
\(\Leftrightarrow2\left(1-x\right)< 3\left(x+4\right)\)
\(\Leftrightarrow2-2x< 3x+12\)
\(\Leftrightarrow-5x< 10\)
\(\Leftrightarrow x>-2\)
Vậy bất phương trình có tập nghiệm là: S ={x| x > -2}
c) \(\frac{2x-3}{2}>\frac{8x-11}{6}\)
\(\Leftrightarrow3\left(2x-3\right)>8x-11\)
\(\Leftrightarrow6x-9>8x-11\)
\(\Leftrightarrow-2x>-2\)
\(\Leftrightarrow x< 1\)
Vậy bất phương trình có tập nghiệm là: S ={x| x < 1}
a.\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-x^2+2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-1\end{matrix}\right.\)
(x-2)(x+1)(x+3)=(x+3)(x+1)(2x-58)
\(x^3+2x^2-5x-6\)=\(2x^3+3x^2-14x-15\)
\(-x^3-x^2+9x+9=0\)
\(-x^2\left(x+1\right)+9\left(x+1\right)=0\)
\(\left(x+1\right)\left(9-x^2\right)\)=0
(x+1)(3-x)(3+x)=0
*x+1=0 =>x=-1
*3-x=0=>x=3
*3+x=0=>x=-3
mk chỉ giải đc có bài 1 thui nha bn
\(\frac{4}{x-2}+\frac{1}{x+3}=0\)
ĐKXĐ: x ≠ 2 và x ≠ -3
QĐKM:
⇔(x+3)4 + (x-2)1 = 0
⇔4x + 12 + x - 2 = 0
⇔4x + x = -12 + 2
⇔5x = -10
⇔x= -2
S={-2}