Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. ĐKXĐ: ...
\(\Leftrightarrow\frac{\pi}{3}sin\pi x=\frac{\pi}{6}+k\pi\)
\(\Leftrightarrow sin\pi x=\frac{1}{2}+3k\)
\(-1\le\frac{1}{2}+3k\le1\Rightarrow k=0\)
\(\Rightarrow sin\pi x=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\pi x=\frac{\pi}{6}+k2\pi\\\pi x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}+2k\\x=\frac{5}{6}+2k\end{matrix}\right.\)
a/
\(\Leftrightarrow\frac{\pi}{6}cosx+\frac{\pi}{3}=k\pi\)
\(\Leftrightarrow cosx=-2+6k\)
Do \(-1\le cosx\le1\Rightarrow-1\le-2+6k\le1\)
\(\Rightarrow\frac{1}{6}\le k\le\frac{1}{2}\Rightarrow\) ko tồn tại k thỏa mãn
Vậy pt vô nghiệm
b.
\(\Leftrightarrow\pi cos3x=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow cos3x=\frac{1}{2}+k\)
\(-1\le\frac{1}{2}+k\le1\Rightarrow k=\left\{-1;0\right\}\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
b.
ĐKXĐ: ...
\(\Leftrightarrow\frac{\pi}{3}cot\pi x=\frac{\pi}{6}+k\pi\)
\(\Leftrightarrow cot\pi x=\frac{1}{2}+3k\)
\(\Leftrightarrow\pi x=arccot\left(\frac{1}{2}+3k\right)+n\pi\)
\(\Leftrightarrow x=\frac{1}{\pi}arccot\left(\frac{1}{2}+3k\right)+n\)
c.
\(\Leftrightarrow\left[{}\begin{matrix}\pi tan3x=\frac{\pi}{6}+k2\pi\\\pi tan3x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tan3x=\frac{1}{6}+2k\\tan3x=\frac{5}{6}+2k\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}arctan\left(\frac{1}{6}+2k\right)+\frac{n2\pi}{3}\\x=\frac{1}{3}arctan\left(\frac{5}{6}+2k\right)+\frac{n2\pi}{3}\end{matrix}\right.\)
a/
\(\Leftrightarrow\frac{\pi}{2}sin\pi\left(x+1\right)=\frac{\pi}{4}+k\pi\)
\(\Leftrightarrow sin\pi\left(x+1\right)=\frac{1}{2}+2k\)
Do \(-1\le sin\pi\left(x+1\right)\le1\Rightarrow k=0\)
\(\Rightarrow sin\pi\left(x+1\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\pi\left(x+1\right)=\frac{\pi}{6}+k2\pi\\\pi\left(x+1\right)=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\frac{1}{6}+2k\\x+1=\frac{5}{6}+2k\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{6}+2k\\x=-\frac{1}{6}+2k\end{matrix}\right.\)
a.
\(sinx+cosx+\left(sinx+cosx\right)^2+cos^2x-sin^2x=0\)
\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1+2cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\1+2cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
1.
\(\Leftrightarrow\frac{\pi}{3}cosx-\frac{8\pi}{3}=k\pi\)
\(\Leftrightarrow cosx=8+3k\)
Do \(-1\le cosx\le1\Rightarrow-1\le8+3k\le1\)
\(\Rightarrow-3\le k\le-\frac{7}{3}\) \(\Rightarrow k=-3\)
\(\Rightarrow cosx=-1\Rightarrow x=\pi+k2\pi\)
2.
\(\Leftrightarrow\frac{\pi}{3}cos2\pi x=\frac{\pi}{6}+k\pi\)
\(\Leftrightarrow cos2\pi x=\frac{1}{2}+3k\)
Do \(-1\le2\pi x\le1\Rightarrow-1\le\frac{1}{2}+3k\le1\)
\(\Rightarrow-\frac{1}{2}\le k\le\frac{1}{6}\Rightarrow k=0\)
\(\Rightarrow cos2\pi x=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}2\pi x=\frac{\pi}{3}+k2\pi\\2\pi x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}+k\\x=-\frac{1}{6}+k\end{matrix}\right.\)