Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A | B |
1.(x3-3x2+3x-1):(x-1) | a.x2-2x+1 |
2.(x+3)(x2-3x+9) | b.(x2+3)(x-1) |
3. x4+3x-x3-3 | c. 27+x3 |
Nối: 1--a ; 2--c ;3 -- b |

áp dụng BĐT cô si cho 4 số ta có
\(a^4+a^4+a^4+b^4\ge4\sqrt[4]{a^4.a^4.a^4.b^4}\)
<=> \(a^4+a^4+a^4+b^4\ge4a^3b\)
tương tự
a4 +b4+b4 +b4 ≥4ab3
công vế với vế ta đc
4a4+4b4 ≥4a3b +4ab3
<=> a4+b4 ≥ a3b +b3a (chia cả 2 vế cho 4) (đpcm)

Bài 1: 2017 - 2a < 2017 - 2b
<=> -2a < -2b
<=> 2a > 2b
<=> a > b
b) a > b
=> -2018a < -2018b
=> -2018a + 29 < -2018b + 29 ( đpcm)
Bài 2:
( x + 5) ( x - 5) > (x+2)2 + 4
=> x2 - 25 > x2 + 4x + 8
=> -4x > 33
=> x < -8,25
Bài 1: a) 2017 - 2a <2017 - 2b
⇒ -2a < -2b
⇒ a > b
b)-2018a + 29 < -2018b - 29
⇒ -2018a < - 2018b
⇒a > b (đpcm)
Bài 2:
(x+5) (x- 5) > (x+2)2 + 4
⇔ x2 - 5x + 5x - 25 > x2 + 4x + 4 + 4
⇔ x2 - 5x + 5x - x2 - 4x > 4+ 4+ 25
⇔ - 4x > 33
⇔x < -33/4

a, Ta có:
\(999^4+999=999\left(999^3+1^3\right)\)
Đây là 1 hằng đẳng thức nên :
\(=999\left(999+1\right)\left(999^2-999+1\right)\)
\(=999.1000.\left(999^2-999+1\right)⋮1000\)
=>ĐPCM.
b , \(\left(x^2+2.\dfrac{5}{2}.x+\left(\dfrac{5}{2}\right)^2\right)+\dfrac{3}{4}\)
\(=>\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
=> Ta có ĐPCM...

cái bài 2 câu 1 câu 2 và câu 3 sửa cái vế phải lại thành 3/2-1-2x/4 và -15/5 và 2.(x-1)/5

Bài 1:
Các PT bậc nhất: a, c, e, f
a) $a=1; b=2$
c) $a=-12; b=1$
e) $a=4; b=-12$
f) $a=2; b=-4$
Bài 2:
a) $(-2)^2-5(-2)+6\neq 0$ nên $x=-2$ không phải nghiệm của pt $x^2-5x+6=0$
Vậy $a$ sai
b) Đề không rõ ("S=F" là như thế nào vậy bạn)
c) $0x=0$ có vô số nghiệm $x\in\mathbb{R}$
Vậy $c$ sai
d) Đúng. Đây là pt ẩn $x$
e) Sai. Vì $ax+b=0$ là pt bậc nhất 1 ẩn khi mà $a\neq 0$
f) $9^2\neq 3$ nên $x^2=3$ không có nghiệm $x=9$

a)
\(\begin{array}{l}2x + 6 = 0\\\,\,\,\,\,\,\,2x = - 6\\\,\,\,\,\,\,\,\,\,\,x = \left( { - 6} \right):2\\\,\,\,\,\,\,\,\,\,\,x = - 3\end{array}\)
Vậy \(x = - 3\) là nghiệm của phương trình.
\( \to \) Chọn đáp án A.
b)
\(\begin{array}{l} - 3x + 5 = 0\\\,\,\,\,\,\, - 3x = - 5\\\,\,\,\,\,\,\,\,\,\,\,\,x = \left( { - 5} \right):\left( { - 3} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{5}{3}\end{array}\)
Vậy \(x = \frac{5}{3}\) là nghiệm của phương trình.
\( \to \) Chọn đáp án B.
c)
\(\begin{array}{l}\frac{1}{4}z = - 3\\\,\,\,\,z = \left( { - 3} \right):\frac{1}{4}\\\,\,\,\,z = - 12\end{array}\)
Vậy \(z = - 12\) là nghiệm của phương trình.
\( \to \) Chọn đáp án D.
d)
\(\begin{array}{l}2\left( {t - 3} \right) + 5 = 7t - \left( {3t + 1} \right)\\\,\,\,\,2t - 6 + 5 = 7t - 3t - 1\\\,\,\,\,\,\,\,\,\,\,\,\,2t - 1 = 4t - 1\\\,\,\,\,\,\,\,\,\,2t - 4t = - 1 + 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 2t = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,t = 0:\left( { - 2} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,t = 0\end{array}\)
Vậy \(t = 0\) là nghiệm của phương trình.
\( \to \) Chọn đáp án D.
e)
Với đáp án A:
Thay \(x = - 2\) vào phương trình \(x - 2 = 0\) ta được \( - 2 - 2 = - 4 \ne 0\)
Vậy \(x = - 2\) không là nghiệm của phương trình \(x - 2 = 0\).
Với đáp án B:
Thay \(x = - 2\) vào phương trình \(x + 2 = 0\) ta được \( - 2 + 2 = 0\)
Vậy \(x = - 2\) là nghiệm của phương trình \(x + 2 = 0\).
\( \to \) Chọn đáp án B