K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

bạn có thể giúp mình làm ý f của câu 1 được ko

28 tháng 3 2020

Copy có khác, ko đọc đc j!!! heheʌl

Câu 3:

1)

a) Ta có: 3x−2=2x−33x−2=2x−3

⇔3x−2−2x+3=0⇔3x−2−2x+3=0

⇔x+1=0⇔x+1=0

hay x=-1

Vậy: x=-1

b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y

⇔27+2y=27+4y⇔27+2y=27+4y

⇔27+2y−27−4y=0⇔27+2y−27−4y=0

⇔−2y=0⇔−2y=0

hay y=0

Vậy: y=0

c) Ta có: 7−2x=22−3x7−2x=22−3x

⇔7−2x−22+3x=0⇔7−2x−22+3x=0

⇔−15+x=0⇔−15+x=0

hay x=15

Vậy: x=15

d) Ta có: 8x−3=5x+128x−3=5x+12

⇔8x−3−5x−12=0⇔8x−3−5x−12=0

⇔3x−15=0⇔3x−15=0

⇔3(x−5)=0⇔3(x−5)=0

Vì 3≠0

nên x-5=0

hay x=5

Vậy: x=5

29 tháng 3 2020

a) 3x - 2 = 2x - 3

\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0

\(\Leftrightarrow\) x + 1 = 0

\(\Rightarrow\) x = -1

b) 3 - 4y + 24 + 6y = y + 27 + 3y

\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0

\(\Leftrightarrow\) -2y = 0

\(\Rightarrow\) y = 0

c)7 - 2x = 22 - 3x

\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0

\(\Leftrightarrow\) -15 + x = 0

\(\Rightarrow\) x = 15

d) 8x - 3 = 5x + 12

\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0

\(\Leftrightarrow\)3x -15 = 0

\(\Leftrightarrow\) 3x = 15

\(\Rightarrow\) x = 5

e) x - 12 + 4x = 25 + 2x - 1

\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0

\(\Leftrightarrow\) 3x - 36 = 0

\(\Leftrightarrow\) 3x = 36

\(\Rightarrow\) x = 12

f ) x + 2x + 3x - 19 = 3x + 5

\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0

\(\Leftrightarrow\)3x - 24 = 0

\(\Leftrightarrow\) 3x = 24

\(\Rightarrow\) x = 8

g) 11+ 8x - 3 = 5x - 3 +x

\(\Leftrightarrow\)8x + 8 = 6x - 3

\(\Leftrightarrow\)8x - 6x = -3 - 8

\(\Leftrightarrow\)2x = -11

\(\Rightarrow\)x = \(-\frac{11}{2}\)

h) 4 - 2x +15 = 9x + 4 -2

\(\Leftrightarrow\)19 - 2x = 7x + 4

\(\Leftrightarrow\)-2x - 7x = 4 - 19

\(\Leftrightarrow\)-9x = -15

\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)

Baøi 1. Giải các phương trình sau bằng cách đưa về dạng ax + b = 0: 1. a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12 e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5 g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x 2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x – 2)(x2 +...
Đọc tiếp

Baøi 1. Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:

1. a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y

c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12

e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5

g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x

2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)

c) 7 – (2x + 4) = – (x + 4) d) (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3

e) (x + 1)(2x – 3) = (2x – 1)(x + 5) f) (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)

g) (x – 1) – (2x – 1) = 9 – x h) (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2

i) x(x + 3)2 – 3x = (x + 2)3 + 1 j) (x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1)

3. a) 1,2 – (x – 0,8) = –2(0,9 + x) b) 3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x)

c) 2,3x – 2(0,7 + 2x) = 3,6 – 1,7x d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7

e) 3 + 2,25x +2,6 = 2x + 5 + 0,4x f) 5x + 3,48 – 2,35x = 5,38 – 2,9x + 10,42

0
Bài 1: Giải các phương trình sau: Câu 1. a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12 e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5 g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x 2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x...
Đọc tiếp

Bài 1: Giải các phương trình sau:

Câu 1.

a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y

c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12

e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5

g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x

2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)

c) 7 – (2x + 4) = – (x + 4) d) (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3

e) (x + 1)(2x – 3) = (2x – 1)(x + 5) f) (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)

g) (x – 1) – (2x – 1) = 9 – x h) (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2

i) x(x + 3)2 – 3x = (x + 2)3 + 1 j) (x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1)

3. a) 1,2 – (x – 0,8) = –2(0,9 + x) b) 3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x)

c) 2,3x – 2(0,7 + 2x) = 3,6 – 1,7x d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7

e) 3 + 2,25x +2,6 = 2x + 5 + 0,4x f) 5x + 3,48 – 2,35x = 5,38 – 2,9x + 10,42

4.a) (5x-2)/3=(5-3x)/2 b)(10x+3)/12=1+((6+8x)/9)

c)2(x+3/5)=5-(13/5+x) d)7/8x-5(x-9)=(20x+1,5)/6

e)(7x-1)/6+2x=(16-x)/5 f)4(0,5-1,5x)=-(5x-6)/3

g)(3x+2)/2-(3x+1)/6=5/3+2x h)(x+4)/5-(x+4)=x/3-(x-2)/2

i) (4x+3)/5-(6x-2)/7=(5x+4)/3+3 k)(5x+2)/6-(8x-1)/3=(4x+2)/5-5

m)(2x-1)/5-(x-2)/3=(x+7)/15 n)1/4(x+3)=3-1/2(x+1)-1/3(x+2)

Bài 2 Tìm giá trị của k sao cho:

a. Phương trình: 2x + k = x – 1 có nghiệm x = – 2.

b. Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2

c. Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1

1

Bài 2:

a) Thay x=-2 vào phương trình 2x+k=x-1, ta được

2*(-2)+k=-2-1

⇔-4+k=-3

⇔k=-3-(-4)=-3+4=1

Vậy: Khi k=1 thì phương trình 2x+k=x-1 có nghiệm là x=-2

b) Thay x=2 vào phương trình (2x+1)(9x+2k)-5(x+2)=40, ta được

(2*2+1)*(9*2+2k)-5*(2+2)=40

⇔5*(18+2k)-20=40

⇔5*(18+2k)=40+20

⇔18+2k=12

⇔2k=12-18=-6

⇔k=-3

Vậy: khi k=-3 thì phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm là x=2

c) Thay x=1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k), ta được

2*(2*1+1)+18=3*(1+2)*(2*1+k)

⇔2*3+18=3*3*(2+k)

⇔24=9*(2+k)

\(2+k=\frac{24}{9}=\frac{8}{3}\)

\(\Leftrightarrow k=\frac{8}{3}-2=\frac{2}{3}\)

Vậy: khi \(k=\frac{2}{3}\) thì phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm là x=1

26 tháng 1 2017

 a. 5-(x-6)=4(3-2x)

<=>5-x+6 = 12-8x

<=>-x+8x =-5-6+12

<=>7x=1

<=>x=\(\frac{1}{7}\)

Vậy phương trình có nghiệm là S= ( \(\frac{1}{7}\))

c.7 -(2x+4) =-(x+4)

<=> 7-2x-4=-x-4

<=>-2x+x= -7+4-4

<=> -x = -7

<=> x=7

Vậy phương trình có nghiệm là S=(7)

5 tháng 3 2020

\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\\ \left(3x+2\right)\left(x^2-1\right)-\left(9x^2-4\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left[\left(x-1\right)-\left(3x-2\right)\right]=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(1-2x\right)=0\\ \left[{}\begin{matrix}3x+2=0\\x+1=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)

\(b.x\left(x+3\right)\left(x-3\right)-\left(x+2\right)\left(x^2-2x+4\right)=0\\ x\left(x^2-9\right)-\left(x^3+8\right)=0\\ x^3-9x-x^3-8=0\\ -9x-8=0\\ -9x=8\\ x=\frac{-8}{9}\)

\(c.2x\left(x-3\right)+5\left(x-3\right)=0\\ \left(x-3\right)\left(2x+5\right)=0\\ \left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-5}{2}\end{matrix}\right.\)

\(d.\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\\ \left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\\ \left(3x-1\right)\left[\left(x^2+2\right)-\left(7x-10\right)\right]=0\\ \left(3x-1\right)\left(x^2+2-7x+10\right)=0\\ \left(3x-1\right)\left(x^2-7x+12\right)=0\\ \left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \left(3x-1\right)\left[\left(x^2-4x\right)+\left(-3x+12\right)\right]=0\\ \left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \left(3x-1\right)\left(x-4\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}3x-1=0\\x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=4\\x=3\end{matrix}\right.\)

5 tháng 3 2020

\(e.\left(x+2\right)\left(3-4x\right)=x^2+4x+4\\ \left(x+2\right)\left(3-4x\right)=\left(x+2\right)^2\\ \left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\\ \left(x+2\right)\left[\left(3-4x\right)-\left(x+2\right)\right]=0\\ \left(x+2\right)\left(3-4x-x-2\right)=0\\ \left(x+2\right)\left(1-5x\right)=0\left[{}\begin{matrix}x+2=0\\1-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{1}{5}\end{matrix}\right.\)

\(f.x\left(2x-7\right)-4x+14=0\\ x\left(2x-7\right)-2\left(2x-7\right)=0\\ \left(2x-7\right)\left(x-2\right)=0\\ \left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)

\(g.3x-15=2x\left(x-5\right)\\ 3\left(x-5\right)=2x\left(x-5\right)\\ 3\left(x-5\right)-2x\left(x-5\right)=0\\ \left(x-5\right)\left(3-2x\right)=0\\ \left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)

\(h.\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \left(2x+1\right)\left[\left(3x-2\right)-\left(5x-8\right)\right]=0\\ \left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \left(2x+1\right)\left(6-2x\right)=0\\ \left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=3\end{matrix}\right.\)

Bài 1:

a) 5(x-3)-4=2(x-1)

\(\Leftrightarrow5x-15-4=2x-2\)

\(\Leftrightarrow5x-19-2x+2=0\)

\(\Leftrightarrow3x-17=0\)

\(\Leftrightarrow3x=17\)

\(\Leftrightarrow x=\frac{17}{3}\)

Vậy: \(x=\frac{17}{3}\)

b) 5-(6-x)=4(3-2x)

\(\Leftrightarrow5-6+x=12-8x\)

\(\Leftrightarrow-1+x-12+8x=0\)

\(\Leftrightarrow-13+9x=0\)

\(\Leftrightarrow9x=13\)

\(\Leftrightarrow x=\frac{13}{9}\)

Vậy: \(x=\frac{13}{9}\)

c) (3x+5)(2x+1)=(6x-2)(x-3)

\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)

\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)

\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)

\(\Leftrightarrow33x-1=0\)

\(\Leftrightarrow33x=1\)

\(\Leftrightarrow x=\frac{1}{33}\)

Vậy: \(x=\frac{1}{33}\)

d) \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+4x+4+2x-8=x^2-2x-4x+8\)

\(\Leftrightarrow x^2+6x-4=x^2-6x+8\)

\(\Leftrightarrow x^2+6x-4-x^2+6x-8=0\)

\(\Leftrightarrow12x-12=0\)

\(\Leftrightarrow x=1\)

Vậy:x=1

Bài 2:

a)\(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)

\(\Leftrightarrow\frac{x}{3}-\frac{5x}{6}-\frac{5x}{4}-\frac{x}{4}+5=0\)

\(\Leftrightarrow\frac{4x}{12}-\frac{10x}{12}-\frac{15x}{12}-\frac{3x}{12}+\frac{60}{12}=0\)

\(\Leftrightarrow4x-10x-15x-3x+60=0\)

\(\Leftrightarrow-24x+60=0\)

\(\Leftrightarrow-24x=-60\)

\(\Leftrightarrow x=\frac{5}{2}\)

Vậy: \(x=\frac{5}{2}\)

b) \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow\frac{8x-3}{4}-\frac{3x-2}{2}-\frac{2x-1}{2}-\frac{x+3}{4}=0\)

\(\Leftrightarrow\frac{8x-3}{4}-\frac{2\left(3x-2\right)}{4}-\frac{2\left(2x-1\right)}{4}-\frac{x+3}{4}=0\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)-2\left(2x-1\right)-\left(x+3\right)=0\)

\(\Leftrightarrow8x-3-6x+4-4x+2-x-3=0\)

\(\Leftrightarrow-3x=0\)

\(\Leftrightarrow x=0\)

Vậy: x=0

c) \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)

\(\Leftrightarrow\frac{15\left(x-1\right)}{30}-\frac{2\left(x+1\right)}{30}-\frac{5\left(2x-13\right)}{30}=0\)

\(\Leftrightarrow15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)=0\)

\(\Leftrightarrow15x-15-2x-2-10x+65=0\)

\(\Leftrightarrow3x+48=0\)

\(\Leftrightarrow3x=-48\)

\(\Leftrightarrow x=-16\)

Vậy: x=-16

d) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

\(\Leftrightarrow\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}-\frac{1-x}{2}+2=0\)

\(\Leftrightarrow\frac{9\left(3-x\right)}{24}+\frac{16\left(5-x\right)}{24}-\frac{12\left(1-x\right)}{24}+\frac{48}{24}=0\)

\(\Leftrightarrow9\left(3-x\right)+16\left(5-x\right)-12\left(1-x\right)+48=0\)

\(\Leftrightarrow27-9x+80-16x-12+12x+48=0\)

\(\Leftrightarrow-13x+143=0\)

\(\Leftrightarrow-13x=-143\)

\(\Leftrightarrow x=11\)

Vậy: x=11

e) \(\frac{3\left(5x-2\right)}{4}-2=\frac{7x}{3}-5\left(x-7\right)\)

\(\Leftrightarrow\frac{3\left(5x-2\right)}{4}-2-\frac{7x}{3}+5\left(x-7\right)=0\)

\(\Leftrightarrow\frac{9\left(5x-2\right)}{12}-\frac{24}{12}-\frac{28x}{12}+\frac{60\left(x-7\right)}{12}=0\)

\(\Leftrightarrow9\left(5x-2\right)-24-28x+60\left(x-7\right)=0\)

\(\Leftrightarrow45x-18-24-28x+60x-420=0\)

\(\Leftrightarrow77x-462=0\)

\(\Leftrightarrow77x=462\)

\(\Leftrightarrow x=6\)

Vậy:x=6

Bài 3:

a) \(\left(5x-4\right)\left(4x+6\right)=0\)

\(\Leftrightarrow\left(5x-4\right)\cdot2\cdot\left(2x+3\right)=0\)

\(2\ne0\)

nên \(\left[{}\begin{matrix}5x-4=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=\frac{-3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{4}{5};-\frac{3}{2}\right\}\)

b) \(\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\\x=\frac{-4}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{5;\frac{3}{2};\frac{-4}{3}\right\}\)

c) \(\left(2x+1\right)\left(x^2+2\right)=0\)

Ta có: \(\left(2x+1\right)\left(x^2+2\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(2x+1=0\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy: \(x=\frac{-1}{2}\)

d) \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow4\left(2x-1\right)\left(x^2+2x+2\right)=0\)

Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta lại có \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1\ne0\forall x\)(3)

Ta có: \(4\ne0\)(4)

Từ (3) và (4) suy ra

2x-1=0

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy: \(x=\frac{1}{2}\)

Bài 4:

a) \(\left(x-2\right)\left(2x+3\right)=\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow2x^2+3x-4x-6=x^2-2x-x+2\)

\(\Leftrightarrow2x^2-x-6=x^2-3x+2\)

\(\Leftrightarrow2x^2-x-6-x^2+3x-2=0\)

\(\Leftrightarrow x^2+2x-8=0\)

\(\Leftrightarrow x^2+2x+1-9=0\)

\(\Leftrightarrow\left(x+1\right)^2-3^2=0\)

\(\Leftrightarrow\left(x+1-3\right)\left(x+1+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-4\right\}\)

b) \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)-\left(x-5\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\)

c) \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)

d) \(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)

\(\Leftrightarrow x^2+4x+4-9\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x^2+4x+4-9x^2+36x-36=0\)

\(\Leftrightarrow-8x^2+40x-32=0\)

\(\Leftrightarrow-\left(8x^2-40x+32\right)=0\)

\(\Leftrightarrow-8\left(x^2-5x+4\right)=0\)

\(-8\ne0\)

nên \(x^2-5x+4=0\)

\(\Leftrightarrow x^2-x-4x+4=0\)

\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{1;4\right\}\)

e) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow4\left(4x^2+28x+49\right)-9\left(x^2+6x+9\right)=0\)

\(\Leftrightarrow16x^2+112x+196-9x^2-54x-81=0\)

\(\Leftrightarrow7x^2+58x+115=0\)

\(\Leftrightarrow7x^2+23x+35x+115=0\)

\(\Leftrightarrow x\left(7x+23\right)+5\left(7x+23\right)=0\)

\(\Leftrightarrow\left(7x+23\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=-23\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-23}{7};-5\right\}\)

Bài 5:

a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left[\left(3x-2\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-2\\x=-1\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{2}{3};-1;\frac{1}{2}\right\}\)

b) \(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow2x^2-2x+x^2+2x-3=0\)

\(\Leftrightarrow3x^2-3=0\)

\(\Leftrightarrow3\left(x^2-1\right)=0\)

\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{1;-1\right\}\)

c) \(x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2-x+1\right)=0\)(5)

Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta lại có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\ne0\forall x\)(6)

Từ (5) và (6) suy ra

\(\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy: x=-1

18 tháng 2 2020

ko khó đâu, chủ yếu nhát làm

21 tháng 1 2018

\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{3;-\dfrac{5}{2}\right\}\)

\(b,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)

\(\Leftrightarrow-\left(3x-2\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(-x-11-2+5x\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(4x-13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{\dfrac{2}{3};\dfrac{13}{4}\right\}\)

\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-\dfrac{1}{2};3\right\}\)

\(d,\left(x-1\right)\left(2x-1\right)=x\left(1-x\right)\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)+x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1+x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{1;\dfrac{1}{3}\right\}\)

\(e,0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)

\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(1,5x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(0,5x-1,5x+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\-x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{1;3\right\}\)

\(f,\left(x+2\right)\left(3-4x\right)=x^2+4x=4\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-x^2-4x-4=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x-x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(-5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-2;\dfrac{1}{5}\right\}\)

\(g,\left(2x^2+1\right)\left(4x-3\right)=\left(x-12\right)\left(2x^2+1\right)\)

\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3\right)-\left(x-12\right)\left(2x^2+1\right)=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+12\right)=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(3x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\forall x\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\\x=-3\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-3\right\}\)

\(h,2x\left(x-1\right)=x^2-1\)

\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy nghiệm của pt là \(S=\left\{1\right\}\)