Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ˆAEB=90oAEB^=90o (góc nội tiếp chắn nửa đường tròn) ⇒BE⊥AE⇒BE⊥AE mà CM⊥AECM⊥AE (giả thiết)
⇒BE∥CM⇒ˆCME=ˆMEB⇒BE∥CM⇒CME^=MEB^ (hai góc ở vị trí so le trong)
Mà ˆMCB=ˆMEBMCB^=MEB^ (góc nội tiếp cùng chắn cung MB)
⇒ˆCME=ˆMCB⇒CME^=MCB^ (=ˆMEB)(=MEB^)
⇒⇒ cung CE = cung MB
mà cung MB=cung AM (do M là điểm chính giữa của cung AB)
⇒⇒ cung AM=AM= cung CE⇒AM=CECE⇒AM=CE (1) và
ˆACM=ˆCMEACM^=CME^ (góc nội tiếp cùng chắn 2 cung bằng nhau cung AM=cung CE) mà chúng ở vị trí so le trong nên AC//ME⇒ACEMAC//ME⇒ACEM là hình thang lại có thêm AM=CE (cmt) ⇒ACEM⇒ACEM là hình thang cân
b) Do M là điểm chính giữa của cung AB nên MO⊥ABMO⊥AB
CH⊥ABCH⊥AB (giả thiết)
⇒MO//CH⇒ˆHCM=ˆCMO⇒MO//CH⇒HCM^=CMO^ (hai góc ở vị trí so le trong) (2)
ΔOCMΔOCM cân đỉnh O (OM=OC=R) ⇒ˆMCO=ˆCMO⇒MCO^=CMO^ (3)
Từ (2) và (3) suy ra ˆHCM=ˆMCOHCM^=MCO^
⇒CM⇒CM là phân giác của ˆHCOHCO^ (đpcm)
a) ˆAEB=90oAEB^=90o (góc nội tiếp chắn nửa đường tròn) ⇒BE⊥AE⇒BE⊥AE mà CM⊥AECM⊥AE (giả thiết)
⇒BE∥CM⇒ˆCME=ˆMEB⇒BE∥CM⇒CME^=MEB^ (hai góc ở vị trí so le trong)
Mà ˆMCB=ˆMEBMCB^=MEB^ (góc nội tiếp cùng chắn cung MB)
⇒ˆCME=ˆMCB⇒CME^=MCB^ (=ˆMEB)(=MEB^)
⇒⇒ cung CE = cung MB
mà cung MB=cung AM (do M là điểm chính giữa của cung AB)
⇒⇒ cung AM=AM= cung CE⇒AM=CECE⇒AM=CE (1) và
ˆACM=ˆCMEACM^=CME^ (góc nội tiếp cùng chắn 2 cung bằng nhau cung AM=cung CE) mà chúng ở vị trí so le trong nên AC//ME⇒ACEMAC//ME⇒ACEM là hình thang lại có thêm AM=CE (cmt) ⇒ACEM⇒ACEM là hình thang cân
b) Do M là điểm chính giữa của cung AB nên MO⊥ABMO⊥AB
CH⊥ABCH⊥AB (giả thiết)
⇒MO//CH⇒ˆHCM=ˆCMO⇒MO//CH⇒HCM^=CMO^ (hai góc ở vị trí so le trong) (2)
ΔOCMΔOCM cân đỉnh O (OM=OC=R) ⇒ˆMCO=ˆCMO⇒MCO^=CMO^ (3)
Từ (2) và (3) suy ra ˆHCM=ˆMCOHCM^=MCO^
⇒CM⇒CM là phân giác của ˆHCOHCO^ (đpcm)
a) – Vẽ đồ thị y = 2x (1):
Cho x= 0 ⇒ y= 0 ta được O (0, 0)
Cho x= 2 ⇒ y = 4 ta được điểm (2; 4)
- Vẽ đồ thị y = 0,5x (2):
Cho x= 0 ⇒ y = 0 ta được O (0; 0)
Cho x = 4 ⇒ y = 2 ta được điểm (4; 2)
- Vẽ đồ thị y = -x + 6 (3):
Cho x = 0 ⇒ y = 6 được điểm (0; 6)
Cho y = 0 ⇒ x = 6 được điểm (6; 0)
b) Theo đề bài A, B theo thứ tự là giao điểm của đường thẳng (3) với các đường thẳng (1) và (2), nên ta có:
Hoành độ giao điểm của A là nghiệm của phương trình:
- x + 6 = 2x ⇒ x = 2
=> y = 4 => A(2; 4)
Hoành độ giao điểm của B là nghiệm của phương trình:
- x + 6 = 0,5x ⇒ x = 4
⇒ y = 2 ⇒ B(4; 2)
c) Ta có:
Bài 1:
a: \(x^2+6x+8=0\)
=>(x+2)(x+4)=0
=>x=-2 hoặc x=-4
b: \(9x^2-6x+1=0\)
=>(3x-1)2=0
=>3x-1=0
hay x=1/3
Câu 1:
a. x2 + 6x + 8 = 0
\(\Delta'=3^2-8=1>0\)
Do \(\Delta'>0\) nên phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{-3+\sqrt{1}}{1}=-2\)
\(x_2=\dfrac{-3-\sqrt{1}}{1}=-4\)
b. 9x2 - 6x + 1 = 0
\(\Delta'=\left(-3\right)^2-9.1=0=0\)
Do \(\Delta'=0\) nên phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{3}{9}=\dfrac{1}{3}\)