K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I(x,y) có tung độ dương nên y>0 và thuộc (d)

nên I(x;-3x-4)

y>0

=>-3x-4>0

=>-3x>4

=>x<-4/3

Theo đề, ta có: d(I;Ox)=d(I;Oy)=R

(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|

=>3x+4=x hoặc -3x-4=x

=>2x=-4 hoặc -4x=4

=>x=-2(nhận) hoặc x=-1(loại)

=>I(-2;2)

R=|2|=2

=>(C): (x+2)^2+(y-2)^2=4

=>B

I(x,y) có tung độ dương nên y>0 và thuộc (d)

nên I(x;-3x-4)

y>0

=>-3x-4>0

=>-3x>4

=>x<-4/3

Theo đề, ta có: d(I;Ox)=d(I;Oy)=R

(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|

=>3x+4=x hoặc -3x-4=x

=>2x=-4 hoặc -4x=4

=>x=-2(nhận) hoặc x=-1(loại)

=>I(-2;2)

R=|2|=2

=>(C): (x+2)^2+(y-2)^2=4

=>B

I Đại Số bài 1 giải phương trình a )\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\) Bài 2 Tìm giá trị tham số m để phương trình \(\frac{1}{2}\left(y^2+\frac{7}{4}\right)-2y\left(m-1\right)=2m^2-8\) nhận \(y=\frac{1}{2}\)là nghiệm. Bài 3 giải phương...
Đọc tiếp

I Đại Số

bài 1 giải phương trình

a )\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\)

Bài 2 Tìm giá trị tham số m để phương trình \(\frac{1}{2}\left(y^2+\frac{7}{4}\right)-2y\left(m-1\right)=2m^2-8\) nhận \(y=\frac{1}{2}\)là nghiệm.

Bài 3 giải phương trình

a)\(\left(x-1\right)^2=\left(2x+5\right)^2\)

b)\(\frac{\left(x-2\right)^3}{2}=x^2-4x+4\)

c)\(x^3+8=-2x\left(x+2\right)\)

d)\(x^2+8x-5=0\)

e)\(\left(x^2-2x\right)^2-6\left(x^2-2x\right)+9=0\)

g)\(\left(4x-5\right)^2+7\left(4x-5\right)-8=0\)

h)\(\left(x+3\right)^2\left(x^2+6x+1\right)=9\)

j)\(2x\left(8x-1\right)\left(8x^2-x+2\right)-126=0\)

II HÌNH HỌC

Bài1: Cho tam giác ABC có MN//BC và \(\frac{AM}{AB}=\frac{1}{2};MN=3cm\) . Tính BC

Bài 2: Cho hình thang ABCD(AB//CD); hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD lần lượt tại M và N . Chứng minh OM=ON.

Bài 3: Trên các cạnh của AB, AC của ΔABC lần lượt lấy điểm M và N sao cho \(\frac{AM}{MB}=\frac{AN}{NC}\). Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh KM=KN

Bài 4: Cho hình vuông ABCD cạnh 6cm. Trên tia đối của AD lấy điểm I sao cho AI=2cm. IC cắt AB tại K. Tính độ dài IK và IC

1
19 tháng 2 2020
https://i.imgur.com/5ZMFwF5.jpg

1:

c: =>1/3x+2/3-x+1>x+3

=>-2/3x+5/3-x-3>0

=>-5/3x-4/3>0

=>-5x-4>0

=>x<-4/5

d: =>3/2x+5/2-1<=1/3x+2/3+x

=>3/2x+3/2<=4/3x+2/3

=>1/6x<=2/3-3/2=-5/6

=>x<=-5

2:

Mở ảnh

Mở ảnh

Mở ảnh

Mở ảnh

30 tháng 11 2023

Sửa đề: Sao cho biểu thức T đạt GTLN

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=\left(m+1\right)x-m^2-\dfrac{1}{2}\)

=>\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)

=>\(x^2-\left(2m+2\right)x+2m^2+1=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\left(2m^2+1\right)\)

\(=4m^2+8m+4-8m^2-4=-4m^2+8m\)

Để phương trình có hai nghiệm thì Δ>=0

=>\(-4m^2+8m>=0\)

=>\(-4\left(m^2-2m\right)>=0\)

=>\(m^2-2m< =0\)

=>\(m\left(m-2\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m>=0\\m-2< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=0\\m< =2\end{matrix}\right.\)

=>0<=m<=2

TH2: \(\left\{{}\begin{matrix}m< =0\\m-2>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =0\\m>=2\end{matrix}\right.\)

=>Loại

\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)

\(a=\dfrac{1}{2};b=-\left(m+1\right);c=m^2+\dfrac{1}{2}\)

Theo Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{m+1}{\dfrac{1}{2}}=2\left(m+1\right)\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+\dfrac{1}{2}}{\dfrac{1}{2}}=2\left(m^2+\dfrac{1}{2}\right)=2m^2+1\end{matrix}\right.\)

\(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\)

\(=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2-2m^2-1-2m-2\)

\(=\dfrac{1}{2}\left(x_1^2+x_2^2\right)-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[\left(2m+2\right)^2-2\left(2m^2+1\right)\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[4m^2+8m+4-4m^2-2\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left(8m+2\right)-2m^2-2m-3\)

\(=4m+1-2m^2-2m-3=-2m^2+2m-2\)

\(=-2\left(m^2-m+1\right)\)

\(=-2\left(m^2-m+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-2\left[\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

\(=-2\left(m-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}\)

Dấu '=' xảy ra khi m=1/2

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:
PT hoành độ giao điểm:

$\frac{1}{2}x^2-(m+1)x+m^2+\frac{1}{2}=0$

$\Leftrightarrow x^2-2(m+1)x+2m^2+1=0(*)$

Để 2 đths cắt nhau tại 2 điểm pb thì pt $(*)$ phải có 2 nghiệm pb

$\Leftrightarrow \Delta'=(m+1)^2-(2m^2+1)>0$

$\Leftrightarrow m(2-m)>0$

$\Leftrightarrow 0< m< 2$
Áp dụng định lý Viet:

$x_1+x_2=2m+2$
$x_1x_2=2m^2+1$
Khi đó:

$T=y_1+y_2-x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(x_1^2+x_2^2)-x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(x_1+x_2)^2-2x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(2m+2)^2-2(2m^2+1)-(2m+2)$

$=-2m^2+2m-2$

Với điều kiện $0< m< 2$ thì biểu thức này không có min nhé. Bạn xem lại.