Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)
\(f\left(x\right)=0\Rightarrow x=7\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)
2.
\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)
\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)
\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)
3.
\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)
\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)
4.
\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow-6< x< 2\)
\(x-\frac{11x^2-5x+6}{x^2+5x+6}>0\)
\(\Leftrightarrow\frac{x^3-6x^2+11x-6}{x^2+5x+6}>0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)\left(x-3\right)}{\left(x+2\right)\left(x+3\right)}>0\Rightarrow\left[{}\begin{matrix}x>3\\1< x< 2\\-3< x< -2\end{matrix}\right.\)
b/ \(\frac{2-x}{x^3+x^2}-\frac{1-2x}{x^3-3x^2}>0\)
\(\Leftrightarrow\frac{\left(2-x\right)\left(x+1\right)-\left(1-2x\right)\left(x-3\right)}{x^2\left(x+1\right)\left(x-3\right)}>0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-5\right)}{x^2\left(x+1\right)\left(x-3\right)}>0\Rightarrow\left[{}\begin{matrix}x< -1\\x>5\\1< x< 3\end{matrix}\right.\)
c/ \(\left|x^2-x-1\right|\le x-1\)
Với \(x< 1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm
Với \(x\ge1\) hai vế ko âm, bình phương:
\(\left(x^2-x-1\right)^2\le\left(x-1\right)^2\)
\(\Leftrightarrow\left(x^2-x-1\right)^2-\left(x-1\right)^2\le0\)
\(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2\right)\le0\) \(\Rightarrow\sqrt{2}\le x\le2\)