K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: (Giải bài toán sau bằng cách lập hệ phương trình)
Cho hình chữ nhật có chu vi \(48 m\). Nếu tăng chiều rộng thêm \(2 m\) và tăng chiều dài thêm \(3 m\) thì diện tích hình chữ nhật tăng thêm \(64 m^{2}\). Tính độ dài các cạnh của hình chữ nhật ban đầu.


Bài 2: (Giải bài toán sau bằng cách lập hệ phương trình)
Hai người thợ cùng xây một bức tường trong \(3\) giờ \(45\) phút thì xong. Nhưng họ chỉ làm chung trong ba giờ thì người thứ nhất được điều đi làm việc khác, người thứ hai xây tiếp bức tường còn lại trong \(2\) giờ nữa thì xong. Hỏi nếu làm một mình thì mỗi người xây xong bức tường trong bao lâu?


Bài 3: (Giải bài toán sau bằng cách lập hệ phương trình)
Tháng thứ nhất hai tổ sản xuất được \(500\) sản phẩm, sang tháng thứ hai do cải tiến kỹ thuật, tổ 1 làm vượt mức \(10 \%\), tổ 2 làm vượt mức \(15 \%\) so với tháng thứ nhất. Vì vậy tháng thứ hai cả hai tổ đã làm được \(564\) sản phẩm. Hỏi trong tháng thứ nhất, mỗi tổ sản xuất được bao nhiêu sản phẩm?


Bài 4: (Giải bài toán sau bằng cách lập hệ phương trình)
Để hoàn thành một công việc theo dự định thì cần một số công nhân làm trong một số ngày nhất định. Nếu tăng thêm \(10\) công nhân thì công việc hoàn thành sớm được \(2\) ngày. Nếu bớt đi \(10\) công nhân thì phải mất thêm \(3\) ngày nữa mới hoàn thành công việc. Hỏi theo dự định thì cần bao nhiêu người công nhân.


Bài 5: (Giải bài toán sau bằng cách lập hệ phương trình)
Hai người thợ quét sơn một ngôi nhà. Nếu họ cùng làm trong \(6\) ngày thì xong công việc. Hai người làm cùng nhau trong \(3\) ngày thì người thứ nhất được chuyển đi làm công việc khác, người thứ hai làm một mình trong \(4\) ngày nữa thì hoàn thành công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu? các bạn làm rõ ràng chi tiết ra hộ mình nhé . Mình xin chân thành cảm ơn


2

Bài 5: Gọi thời gian làm riêng của người thứ nhất và người thứ hai lần lượt là x(ngày) và y(ngày)

(Điều kiện: x>0; y>0)

Trong 1 ngày, người thứ nhất làm được: \(\frac{1}{x}\) (công việc)

Trong 1 ngày, người thứ hai làm được: \(\frac{1}{y}\) (công việc)

Trong 1 ngày, hai người làm được: \(\frac16\) (công việc)

Do đó, ta có: \(\frac{1}{x}+\frac{1}{y}=\frac16\left(1\right)\)

Trong 3 ngày, người thứ nhất làm được: \(\frac{3}{x}\) (công việc)

Trong 3+4=7 ngày, người thứ hai làm được: \(\frac{7}{y}\) (công việc)

Sau khi làm chung trong 3 ngày thì người thứ nhất đi làm việc khác, người thứ hai hoàn thành phần còn lại trong 4 ngày nên ta có: \(\frac{3}{x}+\frac{7}{y}=1\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac16\\ \frac{3}{x}+\frac{7}{y}=1\end{cases}\Rightarrow\begin{cases}\frac{3}{x}+\frac{3}{y}=\frac36=\frac12\\ \frac{3}{x}+\frac{7}{y}=1\end{cases}\)

=>\(\begin{cases}\frac{3}{x}+\frac{7}{y}-\frac{3}{x}-\frac{3}{y}=1-\frac12=\frac12\\ \frac{1}{x}+\frac{1}{y}=\frac16\end{cases}\Rightarrow\begin{cases}\frac{4}{y}=\frac12\\ \frac{1}{x}=\frac16-\frac{1}{y}\end{cases}\)

=>\(\begin{cases}y=8\\ \frac{1}{x}=\frac16-\frac18=\frac{1}{24}\end{cases}\Rightarrow\begin{cases}y=8\\ x=24\end{cases}\) (nhận)

Vậy: thời gian làm riêng của người thứ nhất và người thứ hai lần lượt là 24(ngày) và 8(ngày)

Bài 3:

Gọi số sản phẩm tổ 1 và tổ 2 làm được trong tháng thứ nhất lần lượt là x(sản phẩm) và y(sản phẩm)

(Điều kiện: x,y∈N*)

Tổng số sản phẩm hai tổ làm được trong tháng thứ nhất là 500 sản phẩm nên x+y=500(3)

Số sản phẩm tổ 1 làm được trong tháng thứ hai là: \(x\left(1+10\%\right)=1,1x\) (sản phẩm)

Số sản phẩm tổ 2 làm được trong tháng thứ hai là:

\(y\left(1+15\%\right)=1,15y\) (sản phẩm)

Tổng số sản phẩm hai tổ làm được trong tháng thứ hai là 564 sản phẩm nên 1,1x+1,15y=564(4)

Từ (3),(4) ta có hệ phương trình:

\(\begin{cases}x+y=500\\ 1,1x+1,15y=564\end{cases}\Rightarrow\begin{cases}1,1x+1,1y=550\\ 1,1x+1,15y=564\end{cases}\)

=>\(\begin{cases}1,1x+1,15y-1,1x-1,1y=564-550=14\\ x+y=500\end{cases}\)

=>\(\begin{cases}0,05y=14\\ x+y=500\end{cases}\Rightarrow\begin{cases}y=280\\ x=500-280=220\end{cases}\) (nhận)

Vậy: số sản phẩm tổ 1 và tổ 2 làm được trong tháng thứ nhất lần lượt là 220(sản phẩm) và 280(sản phẩm)

10 tháng 9

13 tháng 6 2017

Gọi thời gian người thứ nhất xây một mình xong bức tường là \(x\) (giờ), thời gian người thứ hai xây một mình xong bức tường là \(y\) (giờ); \(x>0;y>0\). Coi toàn bộ công việc như một đơn vị công việc.

Hệ hai phương trình bậc nhất hai ẩn

25 tháng 7 2018

undefined

undefined

17 tháng 4 2020

HHHHH dịch là ha ha ha ha ha

17 tháng 4 2020

minh moi hc lop 3

chịu thôi

Nửa chu vi hình chữ nhật là 30:2=15(cm)

Gọi chiều rộng ban đầu là x(cm)

(ĐIều kiện: x>0; x<15/2)

Chiều dài ban đầu là 15-x(cm)

Chiều rộng sau khi tăng thêm 2cm là x+2(cm)

Chiều dài sau khi tăng thêm 3cm là 15-x+3=18-x(cm)

Diện tích tăng thêm \(42cm^2\) nên ta có:

\(\left(x+2\right)\left(18-x\right)-x\left(15-x\right)=42\)

=>\(18x-x^2+36-2x-15x+x^2=42\)

=>x+36=42

=>x=6(nhận)

vậy: Chiều rộng ban đầu là 6cm

Chiều dài ban đầu là 15-6=9cm

Đề thi vào lớp 10_ Hà Nội.(2019-2020)1. Cho hai biểu thức:\(A=\frac{4\left(\sqrt{x}+1\right)}{25-x}\)  và \(B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0,x\ne25\right)\)1. Tính giá trị biểu thức của A khi x=92.Rút gọn biểu thức B.3. Tìm tất cả giá trị nguyên của x để biểu thức P=A.B đạt giá trị nguyên lớn nhất.2.1.Giải bài toán bằng cách lập phương trình hoặc hệ...
Đọc tiếp

Đề thi vào lớp 10_ Hà Nội.(2019-2020)

1. Cho hai biểu thức:

\(A=\frac{4\left(\sqrt{x}+1\right)}{25-x}\)  và \(B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0,x\ne25\right)\)

1. Tính giá trị biểu thức của A khi x=9

2.Rút gọn biểu thức B.

3. Tìm tất cả giá trị nguyên của x để biểu thức P=A.B đạt giá trị nguyên lớn nhất.

2.

1.Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:

Hai đội công nhân cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu đội thứ nhất làm riêng trong 3 ngày rồi dừng lại và đội thứ hai làm tiếp công việc đó trong 5 ngày thì cả hai đổi hoàn thành được 25 % công việc. Hỏi nếu mỗi đội làm riêng thì trong bao nhiêu ngày mới xong công việc trên?

2. Một bồn nước inox có dạng hình trụ có chiều cao 1,75m và diện tích đáy là 0,32 \(m^2\). Hỏi bồn nước này đừng đầy được bao nhiêu mét khối nước ? ( Bỏ qua bể đáy của bồn nước).

3.

1. Giải phương trình: \(x^4-7x^2-18=0\)

2. Trong mặt phẳng toạn độ Oxy, cho đường thẳng (d): \(y=2mx-m^2+1\)và Parabol (P): \(y=x^2\).

a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt.

b) Tìm tất cả giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ : \(x_1,x_2\)thỏa mãn:

\(\frac{1}{x_1}+\frac{1}{x_2}=-\frac{2}{x_1.x_2}+1.\)

4.

Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O).

Hai đường cao BE, CF của tam giác ABC cắt nhau tại H.

1. Chứng minh bốn điểm B, C, E, F cùng thuộc một đường tròn.

2. Chứng minh đường thẳng OA vuông góc với đường thẳng EF.

3. Gọi K là trung điểm của đoạn thẳng BC. Đường thẳng AO cắt đường thẳng BC tại điểm I, đường thẳng EF cắt đường thẳng AH tại điểm P. Chứng minh: \(\Delta APE~\Delta AIB\)

và KH // IP

5.

Cho biểu thức \(P=a^4+b^4-ab,\)với a, b là các số thực thỏa mãn : \(a^2+b^2+ab=3\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P.

(p/s: Các em vào thử sức  :))  )

 

 

 

 

 

 

 

8
7 tháng 6 2019

Câu 4:

A B C E F H O I P K Q x

a) Vì BE,CF là các đường cao của \(\Delta\)ABC nên ^BEC = ^CFB = 900

=> ^BEC và ^CFB cùng nhìn đoạn BC dưới một góc 900

=> Bốn điểm B,C,E,F cùng thuộc đường tròn đường kính BC (Theo quỹ tích cung chứa góc) (đpcm).

b) Gọi Ax là tia tiếp tuyến tại A của đường tròn (O), khi đó OA vuông góc Ax

Từ câu a ta thấy tứ giác BFEC nội tiếp đường tròn  (BC) => ^AFE = ^ACB

Mà ^ACB = ^BAx (Tính chất góc tạo bởi tiếp tuyến và dây) nên ^AFE = ^BAx

=> EF // Ax (2 góc so le trong bằng nhau)

Do OA vuông góc Ax nên OA vuông góc EF (Quan hệ song song, vuông góc) (đpcm).

c) +) Ta dễ có ^OAC = 900 - ^AOC/2 = 900 - ^ABC = ^BAH => ^OAC + ^OAH = ^BAH + ^OAH => ^BAI = ^EAP

Xét \(\Delta\)APE và \(\Delta\)AIB: ^EAP = ^BAI, ^AEP = ^ABI (Tứ giác BFEC nội tiếp) => \(\Delta\)APE ~ \(\Delta\)AIB (g.g) (đpcm).

+) Gọi AO cắt đường tròn (O) lần thứ hai tại Q. Khi đó AQ là đường kính của (O)

Nên ta có: ^ABQ = ^ACQ = 900 hay BQ vuông góc AB, CQ vuông góc AC. Mà CH vuông góc AB, BH vuông góc AC

Nên BQ // CH, BH // CQ (Quan hệ song song vuông góc) => Tứ giác BHCQ là hình bình hành

Từ đó HQ đi qua trung điểm K của BC hay H,K,Q thẳng hàng (1)

Cũng dễ thấy ^QBC = ^HCB (Vì BQ // CH) = ^FEH (Vì B,C,E,F cùng thuộc một đường tròn)

Hay ^QBI = ^HEP. Kết hợp với ^BQI = ^BQA = ^ACB = ^AHE (Cùng phụ ^CAH) = ^EHP

Suy ra \(\Delta\)BIQ ~ \(\Delta\)EPH (g.g) => \(\frac{HP}{QI}=\frac{EP}{BI}\). Lại có \(\frac{EP}{BI}=\frac{AP}{AI}\)nên \(\frac{HP}{QI}=\frac{AP}{AI}\)

Áp dụng ĐL Thales đảo vào \(\Delta\)AQH ta có IP // HQ (2)

Từ (1) và (2) ta thu được KH // IP (đpcm).

7 tháng 6 2019

Nếu ko nhìn rõ thì bn có thể tham khảo tại:

https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html

https://vnexpress.net/giao-duc/so-giao-duc-va-dao-tao-ha-noi-cong-bo-dap-an-thi-vao-lop-10-3934904.html

https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html

https://tin.tuyensinh247.com/dap-an-de-thi-vao-lop-10-mon-toan-ha-noi-nam-2019-c29a45461.html

Bài 1: Hai người làm chung người công việc hết 7 giờ 12 phút. Nếu người thứ nhất làm riêng trong 5 giờ và người thứ 2 làm trong 6 giờ thì được \(\frac{3}{4}\) công việc. Tính thời gian làm xong công việc của mỗi ngườiBài 2: Hai vòi nước nếu cùng chảy vào một bể thì sau 1 giờ 48 phút đầy bể. Nếu mở riêng thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 1 giờ 30 phút. Tính thời...
Đọc tiếp

Bài 1: Hai người làm chung người công việc hết 7 giờ 12 phút. Nếu người thứ nhất làm riêng trong 5 giờ và người thứ 2 làm trong 6 giờ thì được \(\frac{3}{4}\) công việc. Tính thời gian làm xong công việc của mỗi người

Bài 2: Hai vòi nước nếu cùng chảy vào một bể thì sau 1 giờ 48 phút đầy bể. Nếu mở riêng thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 1 giờ 30 phút. Tính thời gian mỗi vòi chảy riêng đầy bể

Bài 3: Hai máy cày cùng xong một đám ruộng thì hết 4 ngày. Nếu cày riêng thì máy một cày xong trước máy hai là 6 ngày. Tính thời gian cày riêng để xong đám ruộng của mỗi máy

Bài 4: Hai công nhân cùng làm một công việc thì hết 12 ngày. Nếu người thứ nhất làm \(\frac{1}{2}\)công việc rồi người kia làm nốt thì hết 25 ngày. Tính thời gian làm riêng để xong công việc của mỗi người

Bài 5: Hai vòi nước cùng chảy vào một bể thì sau 6 giờ thì đầy. Nếu vòi một chảy hết 2 giờ, thì vòi hai chảy hết 3 giờ thì được \(\frac{2}{5}\)bể. Tính thời gian mỗi vòi chảy riêng đầy bể

0
17 tháng 4 2020

20/7 giờ mới xong việc 

17 tháng 4 2020

ban oi cho minh xin kq vs a