K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

d: Xét ΔABC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

nên \(\widehat{C}=30^0\)

Xét ΔABC vuông tại A có 

\(AC=AB\cdot\tan30^0\)

nên \(AC=6\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=12\left(cm\right)\)

a: \(BC=\sqrt{6^2+9^2}=3\sqrt{17}\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{36}{3\sqrt{17}}=\dfrac{12}{\sqrt{17}}\left(cm\right)\)

\(HC=\dfrac{AC^2}{BC}=\dfrac{81}{3\sqrt{17}}=\dfrac{27}{\sqrt{17}}\left(cm\right)\)

b: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)

\(BC=\dfrac{AB^2}{BH}=25\left(cm\right)\)

CH=BC-BH=16(cm)

c: \(AB=\sqrt{55^2-44^2}=33\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=26.4\left(cm\right)\)

\(BH=\dfrac{33^2}{55}=19.8\left(cm\right)\)

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0
Các anh chị cho em hỏi gấp câu cuối 2 bài toán hình học khó lớp 9 ạBài 1: Cho tam giác ABC có AB = 6cm, AC=4,5cm, BC=7.5cm. a) CM: ABC vuông tại A. b) Tính các góc B,C và đường cao AH của tam giác. c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB, AC lần lượt là P và Q. Cm: PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất? d) Tìm tập hợp các điểm N sao cho diện tích tam giác ABC bằng...
Đọc tiếp

Các anh chị cho em hỏi gấp câu cuối 2 bài toán hình học khó lớp 9 ạ

Bài 1: Cho tam giác ABC có AB = 6cm, AC=4,5cm, BC=7.5cm. 
a) CM: ABC vuông tại A. 
b) Tính các góc B,C và đường cao AH của tam giác. 
c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB, AC lần lượt là P và Q. 
Cm: PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất? 
d) Tìm tập hợp các điểm N sao cho diện tích tam giác ABC bằng diện tích tam giác NBC. 

Bài 1 giải giúp em câu d ạ. 

Bài 2: Cho tam giác ABC vuông tại A có AB=3cm, BC=5cm 
a) Giải tam giác ABC. 
b) Kẻ AK _I_ BC tại K, KD _I_ AB tại D, KE_I_AC tại E. 
Cmr: ADKE là hình chữ nhật. Tính độ dài DE. 
c) Cm: AD.AB=AE.AC và tam giác AED ~ ABC 
d) Gọi M là trđiểm của BC. Cmr: DE_I_AM. 
e) Gọi F là giao điểm của DK và AM. Tính S tứ giác ADFE. 

Bài 2 giải giúp em câu e ạ. 

Em xin cảm ơn.

0
16 tháng 7 2020

Vì cậu làm câu a) rồi nên mình chỉ làm 2 câu còn lại thôi nhá (:

O H E C B D M A

a. Ta có: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra  \(\Delta ABC\)cân tại A.

AO là tia phân giác của góc BAC (tính chất hai tiếp tuyến cắt nhau)

Suy ra AO là đường cao của tam giác ABC (tính chất tam giác cân)

Ta có: AO vuông góc với BC tại H

Lại có: \(AB\perp OB\)( tính chất tiếp tuyến )

Tam giác ABO vuông tại B có \(BH\perp AO\)

Theo hệ thức lượng trong tam giác vuông, ta có:

\(OB^2=OH.OA\Rightarrow OH=\frac{OB^2}{OA}=\frac{32}{5}=1,8\left(cm\right)\)

b. Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:

AO2 = AB2 + BO2

Suy ra: AB2 = AO2 – BO2 = 52 – 32 = 16

AB = 4 (cm)

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

DB = DM

EM = EC

Chu vi của tam giác ADE bằng:

AD + DE + EA = AD + DB + AE + EC

= AB + AC = 2AB = 2 . 4 = 8 ( cm )