\(\frac{-3}{\text{2}}+\frac{5}{7}+\frac{-31}{14}< hoac=\text{x}< \frac{1}{\text{2}}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

nhanh gium minh dang gap, cam on

4 tháng 3 2018

Bài 1 mk ko hiểu đề cho lắm 

Bài 2 : 

Đặt \(A=\frac{x+4}{x-2}+\frac{2x-5}{x-2}\)

Ta có : 

\(\frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}=\frac{3x-6+5}{x-2}=\frac{3\left(x-2\right)}{x-2}+\frac{5}{x-2}=3+\frac{5}{x-2}\)

Để \(A\) là số nguyên thì \(\frac{5}{x-2}\) phải là số nguyên \(\Rightarrow\) \(5⋮\left(x-2\right)\) \(\Rightarrow\) \(\left(x-2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Do đó : 

\(x-2\)\(1\)\(-1\)\(5\)\(-5\)
\(x\)\(3\)\(1\)\(7\)\(-3\)

Vậy \(x\in\left\{-3;1;3;7\right\}\) thì A là số nguyên 

Chúc bạn học tốt ~

18 tháng 7 2016

cái này dễ mà

 

5 tháng 4 2016

a) -2 /3 x + 1/5 = 3/10

 -2/3x =1/10 

 x = -3/20 

 vậy x = -3/20

b) 25/9 - 12/13x = 7/

12/13x = 2

x = 13/6

c) (x) - 3/4 =5/3 

(x) = 29/12

x = 29/12 ; -29/-12

 d)  x = 11/2

21 tháng 5 2015

\(A=\frac{3}{2}\times\left(\frac{1}{13\times11}+\frac{1}{13\times15}+\frac{1}{15\times17}+.....+\frac{1}{97\times99}\right)\)

\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+......+\frac{1}{97}-\frac{1}{99}\right)\)

\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{99}\right)\)

\(A=\frac{3}{2}\times\frac{8}{99}\)

\(A=\frac{4}{33}\)

b] \(\frac{A}{5}=\frac{4}{31.35}+\frac{6}{35.41}+\frac{9}{41.50}+\frac{7}{50.57}\)

\(\frac{A}{5}=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}\)

\(\frac{A}{5}=\frac{1}{31}-\frac{1}{57}\)

\(\Rightarrow A=5\left(\frac{1}{31}-\frac{1}{57}\right)=\frac{130}{1767}\)

c] Ta đặt \(\left(8n+5,6n+4\right)=d\)

\(\Rightarrow\frac{8n+5\div d}{6n+4\div d}\Rightarrow4\times\left(6n+4\right)-3\times\left(8n+5\right)=\left(24n+16\right)-\left(24n+15\right):d\)\(\Rightarrow d=1\)

Vậy \(\frac{8n+5}{6n+4}\)là phân số tối giản

 

 

 

12 tháng 3 2019

Bài 5 :

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

    \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{59}\)

     \(A=1-\frac{1}{50}\)

từ trên ta có : \(1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)

     

31 tháng 5 2017

\(S=\frac{2016}{2.3:2}+\frac{2016}{3.4:2}+...+\frac{2016}{2015.2016:2}\)

\(S=\frac{4032}{2.3}+\frac{4032}{3.4}+...+\frac{4032}{2015.2016}\)

\(S=4032\left[\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right]\)

\(S=4032\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right]\)

\(S=4032\left[\frac{1}{2}-\frac{1}{2016}\right]=4032\cdot\frac{1007}{2016}\)

\(S=2014\)

31 tháng 5 2017

S = \(2016+\frac{2016}{1+2}+\frac{2016}{1+2+3+}+...+\frac{2016}{1+2+3+...+2015}\)

S = \(2016+\left(\frac{2016}{1+2}+\frac{2016}{1+2+3}+...+\frac{2016}{1+2+3+...+2015}\right)\)

S = \(2016+2016.\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\right)\)

đặt A = \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\)

A = \(\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2015\right).2015:2}\)

A = \(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2015.2016}\)

A = \(2.\left(\frac{1}{2}-\frac{1}{3}\right)+2.\left(\frac{1}{3}-\frac{1}{4}\right)+...+2.\left(\frac{1}{2015}-\frac{1}{2016}\right)\)

A = \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

A = \(2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)

A = \(2.\frac{1007}{2016}=\frac{1007}{1008}\)

Thay A vào ta được :

S = \(2016+2016.\frac{1007}{1008}\)

S = \(2016.\left(1+\frac{1007}{1008}\right)\)

S = \(2016.\frac{2015}{1008}\)

S = \(4030\)

31 tháng 5 2017

lon hon 1 nha ban

31 tháng 5 2017

sửa lại đề : Chứng tỏ rằng : A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}< 1\)

bài làm

A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}\)

A = \(\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2014-1}{2014!}\)

A = \(1-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2014}{2014!}-\frac{1}{2014!}\)

A = \(1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2013!}-\frac{1}{2014!}\)

A = \(1-\frac{1}{2014!}< 1\)