K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2022

undefinedundefinedundefined

a: BC vuông góc SA

BC vuông góc AB

=>BC vuông góc (SAB)

=>(SAB) vuông góc (SBC)

b: BA vuông AD

BA vuông góc SA

=>BA vuông góc (SAD)

=>BA vuông góc SD

Lấy H là trung điểm của SD

=>HM//DC

=>HM vuông góc BC

ΔSAD vuông tại A nên AH vuông góc SD

=>SD vuông góc (BAH)

=>SD vuông góc (ABM)

=>(SCD) vuông góc (ABM)

11 tháng 5 2022

a. Ta có : \(BC\perp SA;BC\perp AB\Rightarrow BC\perp\left(SAB\right)\Rightarrow\left(SAB\right)\perp\left(SBC\right)\)

b.Dễ dàng c/m : \(AB\perp\left(SAD\right)\) \(\Rightarrow AB\perp SD\)

Lấy H là TĐ SD \(\Rightarrow MH\) // DC // AB 

\(\Delta SAD\) vuông cân tại A ; H là TĐ SD \(\Rightarrow AH\perp SD\)

Suy ra : \(SD\perp\left(ABH\right)\Rightarrow SD\perp\left(ABM\right)\Rightarrow\left(SCD\right)\perp\left(ABM\right)\left(đpcm\right)\)

20 tháng 4 2022

Võ Ngọc Tú Uyênloading...  

1 tháng 6 2021

A B C D N S M P H K

a) (SAB) và (SAD) cùng vuông góc (ABCD), (SAB) và (SAB) có giao tuyến SA => SA vuông góc (ABCD)

=> BC vuông góc SA. Mà BC vuông góc AB nên BC vuông góc (SAB).

Ta cũng có BD vuông góc AS, BD vuông góc AC vì ABCD là hình vuông

=> BD vuông góc (SAC) hay (SAC) vuông góc (SBD).

b) Gọi M là trung điểm của AB, CM cắt AD tại P, H thuộc CM sao cho AH vuông góc CM, K thuộc SH sao cho AK vuông góc SH.

Dễ thấy AN || CM => AN || (SCM) => d(AN,SC) = d(AN,SCM) = d(A,SCM) = d(A,SMP)

Ta có AH vuông góc MP, MP vuông góc AS => MP vuông góc (HAS) => (SMP) vuông góc (HAS)

Vì (SMP) và (HAS) có giao tuyến SH, AK vuông góc SH tại K nên d(A,SMP) = AK

Theo hệ thức lượng thì: \(\frac{1}{AK^2}=\frac{1}{AS^2}+\frac{1}{AM^2}+\frac{1}{AP^2}\)

\(\Rightarrow d\left(AN,SC\right)=d\left(A,SMP\right)=AK=\frac{AS.AM.AP}{\sqrt{AS^2AM^2+AM^2AP^2+AP^2AS^2}}\)

\(=\frac{a\sqrt{2}.\frac{a}{2}.a}{\sqrt{2a^2.\frac{a^2}{4}+\frac{a^2}{4}.a^2+a^2.2a^2}}=\frac{a\sqrt{22}}{11}.\)

22 tháng 11 2018

Đáp án A

a: (SBD) giao (ABCD)=BD

SO vuông góc BD

AO vuông góc BD

=>((SBD);(ABCD))=góc SOA

b: (SCD) giao (SAD)=SD

Kẻ AH vuông góc SC

ΔSDC vuông tại D

Kẻ DK vuông góc SC
Qua H kẻ HF//DK

=>Góc cần tìm là góc AHF

28 tháng 4 2016

s A B C D a

1.SA \(\perp\)AB , SA\(\perp\)AD =>SAB vuông tại A, SAD vuông tại A

\(\begin{cases}AB\perp BC\left(hvABCD\right)\\SA\perp BC\left(SA\perp mpABCD\right)\end{cases}\) =>(SAB)\(\perp\)BC  =>SB\(\perp\)BC =>SBC vuông tại B

\(\begin{cases}AD\perp CD\\SA\perp CD\end{cases}\) =>(SAD)\(\perp\)CD =>SD\(\perp\)CD =>SCD vuông tại D

21 tháng 4 2017

bạn Như cho mình xin đáp án mấy câu còn lại nhé ạ

NV
21 tháng 4 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow\left(SCD\right)\perp\left(SAD\right)\)

\(AC=\sqrt{AD^2+CD^2}=a\sqrt{2}\)

\(BC=\sqrt{BE^2+CE^2}=a\sqrt{2}\)

\(\Rightarrow AC^2+BC^2=AB^2\Rightarrow AC\perp BC\)

\(\Rightarrow BC\perp\left(SAC\right)\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)

b.

\(CD\perp\left(SAD\right)\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD) 

\(\Rightarrow\widehat{SDA}=30^0\Rightarrow SA=AD.tan30^0=\dfrac{a\sqrt{3}}{3}\)

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\)

Qua S kẻ đường thẳng d song song AD

Do \(AD||CE\) \(\Rightarrow\) d là giao tuyến (SAD) và (SCE)

Mà \(d\perp\left(SAB\right)\Rightarrow\widehat{ASE}\) là góc giữa (SAD) và (SCE)

\(AE=\dfrac{AB}{2}=a\)

\(tan\widehat{ASE}=\dfrac{AE}{SA}=\sqrt{3}\Rightarrow\widehat{ASE}=60^0\)

21 tháng 4 2021

\(tan\widehat{ASE}=\sqrt{3}\) chứ aj?