Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2
10:
Vì n là số lẻ nên n=2k-1
Số số hạng là (2k-1-1):2+1=k(số)
Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc {1;5;13;65}
=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)
ck giúp mình với
Bài toán 3
a. 25 - y^2 = 8(x - 2009)
Ta có thể viết lại như sau:
y^2 - 8(x - 2009) + 25 = 0Đây là phương trình bậc hai với hệ số thực.
Ta có thể giải phương trình này như sau:
y = (8x - 1607 ± √(8x - 1607)^2 - 4 * 1 * 25) / 2 y = (4x - 803 ± √(4x - 803)^2 - 200) / 2 y = 2x - 401 ± √(2x - 401)^2 - 100Ta thấy rằng nghiệm của phương trình này là xấp xỉ 2009 và -2009.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = 2009 và y = 0.
b. x^3 y = x y^3 + 1997
Ta có thể viết lại như sau:
x^3 y - x y^3 = 1997 x y (x^2 - y^2) = 1997 x y (x - y)(x + y) = 1997Ta có thể thấy rằng x và y phải có giá trị đối nhau.
Vậy, nghiệm của phương trình này là x = y = 1997/2 = 998,5.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = y = 998.
c. x + y + 9 = xy - 7
Ta có thể viết lại như sau:
x - xy + y + 16 = 0Đây là phương trình bậc hai với hệ số thực.
Ta có thể giải phương trình này như sau:
x = (xy - 16 ± √(xy - 16)^2 - 4 * 1 * 16) / 2 x = (y - 4 ± √(y - 4)^2 - 64) / 2 x = y - 4 ± √(y - 4)^2 - 32Ta thấy rằng nghiệm của phương trình này là xấp xỉ 8 và -8.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = 8 và y = 12.
Bài toán 4
Ta có thể chứng minh bằng quy nạp.
Cơ sở
Khi n = 2, ta có:
x1.x2 + x2.x3 = 0Vậy, x1.x2 + x2.x3 + ...+ xn.x1 = 0 khi n = 2.
Bước đệm
Giả sử rằng khi n = k, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = 0Bước kết luận
Xét số tự nhiên n = k + 1.
Ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = x1.x2 + x2.x3 + ...+ xn.x1 + xn.x1Theo giả thuyết, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = 0Vậy, xn.x1 = -(x1.x2 + x2.x3 + ...+ xn.x1) = 0.
Như vậy, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 shareBài 1: Ta có 200920 = (20092)10 = (2009.2009)10
2009200910 = (10001.2009)10
Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10
Vậy 200920 < 2009200910
B=x2y2+xy+x3+y3
Thay x=-1, y=3 ta có:
B=x2y2+xy+x3+y3
=(-1)2.32+(-1).3+(-1)3+33
= 1.9-3-1+27
= 9-3-1+27
= 32
thay x=-1;y=3 vào biểu thức B ta đc
B=(-1)2.32+(-1).3+(-1)2+32
B=9+(-3)+(-1)+9
B=14
\(C=x^3-2xy+y^3+x^2+y^2+xy+2\)
\(=x^3+y^3+\left(x-y\right)^2+xy+2\)
\(=\left(x+y\right)^3+3xy\left(x+y\right)+\left(x-y\right)^2+xy+2\)
\(=\left(-1\right)^3-3xy+\left(x-y\right)^2+xy+2\)
\(=\left(x-y\right)^2-2xy+1\)
\(=\left(x+y\right)^2-6xy+1\)
\(=\left(-1\right)^2+1-6xy=2-6xy\)