K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !

13 tháng 12 2015

Em mới học lớp 5 thôi ạ!

30 tháng 3 2019

2/ Ta có : abcd = (5c + 1 )^2 

Với c = 6 => ( 5c + 1 )^2 = 31^2 = 961 < 1000 

=> c \(\in\left\{7;8;9\right\}\)

Với c = 7 =>( 5c + 1 )^2  = 36^2 = 1296 ( loại ) Vì 9 khác 7 

     c = 8 => ( 5c + 1 )^2  = 41^ 2 = 1681 ( thỏa mãn )

     c = 9 => ( 5c + 1 )^2  = 46^2 = 2116 ( loại ) vì 1 khác 9 

1 tháng 8 2020

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

=\(3^{n+1}.2.5+2^{n+2}.3\)=\(2.3\left(3^n+2^{n+1}\right)⋮6\)

=> dpcm

1 tháng 8 2020

a) A = 2 + 22 + 23 + ... + 2100

=> 2A = 22 + 23 + 24 + ... + 2101

Lấy 2A trừ A theo vế ta có 

2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)

  => A = 2201 - 2

Sửa đề 2(A + 2) = 22x

=> 2(2201 - 2 + 2) = 22x

=> 2202 = 22x

=> (22)101 = (22)x

=> x = 101 

5 tháng 8 2019

a) \(n^2+n-17⋮n+5\)

\(\Leftrightarrow n\left(n+5\right)-\left(4n+17\right)⋮n+5\)

Mà \(n\left(n+5\right)⋮n+5\)

\(\Rightarrow4n+17⋮n+5\)

\(\Rightarrow4\left(n+5\right)-3⋮n+5\)

mà \(4\left(n+5\right)⋮n+5\)

\(\Rightarrow3⋮n+5\)

\(\Rightarrow n+5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lamf noots

5 tháng 8 2019

b)\(n^2+3n-5⋮n-2\)

\(\Leftrightarrow n^2+2n+n-5⋮n-2\)

\(\Leftrightarrow n\left(n+2\right)+\left(n-2\right)-3⋮n-2\)

Vì \(\hept{\begin{cases}n\left(n-2\right)⋮n-2\\\left(n-2\right)⋮\left(n-2\right)\end{cases}}\)nên \(3⋮n-2\)

\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lập bảng:

\(n\)\(1\)\(-1\)\(3\)\(-3\)
\(n-2\)\(3\)\(1\)\(5\)\(-1\)

Vậy \(n\in\left\{3;1;5;-1\right\}\)

23 tháng 8 2018

Cái này ... 

À cái này ...

cái này ... học rồi ... 

nhớ là học rồi ...

Nhưng quyên CMNR

23 tháng 8 2018

Đề có thể đã sai , mình sửa lại một chút , cách làm thì đúng còn đề xem lại nha

Ta có \(3^{n+3}+2^{n+2}+3^{n+1}+2^{n+3}\)

\(=3^n.27+2^n.4+3^n.3+2^n.8\)

\(=3^n.\left(27+3\right)+2^n.\left(4+8\right)\)

\(=3^n.30+2^n.12\)

\(=6.\left(3^n.5+2^n.2\right)⋮6\)