Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c=0<=>a^2+b^2+c^2+2ab+2bc+2ca=0
<=>a^2+b^2+b^c=-2ab-2bc-2ca
<=>(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2+8abc(a+b+c)
<=>(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2(vì a+b+c=0)(1)
(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2
<=>a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2
<=>a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2
<=>2(a^4+b^4+c^4)=4a^2b^2+4b^2c^2+4c^2a^2(2)
Từ (1) và (2)=>Đccm
Theo bài ra, ta có: a+b+c
Suy ra: 3(a+b+c)-3abc=0
Suy ra: -3abc=0
Tương đương: -3*(b+c)*(a+c)*(a+b)=0
Tương đương: -3* a^2+b^2+c^2=0
Tương đương: -3*0=0
Suy ra: nếu a+b+c=0 thì a3+b3+c3-3abc=0(đpcm)
\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{2}{2ab}+\frac{1}{a^2+b^2}\ge\frac{\left(\sqrt{2}+1\right)^2}{2ab+a^2+b^2}=\frac{3+2\sqrt{2}}{\left(a+b\right)^2}=3+2\sqrt{2}\)
Xem lại đề.
a: Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a+b+c=0\)
a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)
Xét hiệu:
a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc
=(a+b)3+c3-3ab.(a+b+c)
=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2-ab+b2-ac-bc+c2)
ta lại có:
2.(a2-ab+b2-ac-bc+c2)
=2a2-2ab+2b2-2ac-2bc+2c2
=a2-2ab+b2+b2-2bc+c2+a2-2ac+c2
=(a-b)2+(b-c)2+(a-c)2\(\ge\)0 với mọi a,b,c
=>2.(a2-ab+b2-ac-bc+c2)\(\ge\)0
<=>a2-ab+b2-ac-bc+c2\(\ge\)0
ta có thêm a,b,c\(\ge\)0
=>(a+b+c)(a2-ab+b2-ac-bc+c2)\(\ge\)0 với mọi a,b,c
=>a3+b3+c3-3abc\(\ge\)0
<=>a3+b3+c3\(\ge\)3abc
Áp dụng BĐT cô si với ba số không âm ta có :
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3\sqrt[3]{\left(abc\right)^3}=3abc\)
=> ĐPCM