K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

a) (x+y)2-y2=x2+2xy+y2-y2=x2+2xy=x(x+2y)  (đpcm)

11 tháng 7 2016

2 a )

4a2+4a+2=(2a)2+2.2a+1+1=(2a+1)2+1

vì (2a+1)lớn hơn hoặc = 0 với mọi a nên (2a+1)2+1 lớn hơn hoặc = 1 

dấu ''='' xảy ra khi 2a+1=0<=>a=-1/2

13 tháng 6 2017

a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)

\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)

\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)

\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)

Dấu "=" xảy ra khi x=-1 và y=0

13 tháng 6 2017

b)\(5x^2+y^2+2xy-4x=\left(x^2+2xy+y^2\right)+\left(4x^2-4x+1\right)-1\)

\(=\left(x+y\right)^2+\left(2x-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi x=1/2 và y=-1/2

29 tháng 7 2017

\(x^2+3x+2\) =\(x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)=\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Dấu "=" xảy ra <=>\(x+\frac{3}{2}=0\)<=>\(x=-\frac{3}{2}\)

Bài 2:

a) \(x^2-4x+y^2+2y+5=0\)

=> \(\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

=>\(\left(x-2\right)^2+\left(y+1\right)^2=0\)

Vì \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\)nên:

=>\(\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

b)\(2x^2+y^2-2xy+10x+25=0\)

=>\(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

=>\(\left(x-y\right)^2+\left(x+5\right)^2=0\)

Tới đây thì dễ nhá !

29 tháng 7 2017

Mih nhầm nhá, câu a là -1/4 cơ nha bạn

25 tháng 10 2021

a) \(3x\left(2x-y\right)+5y\left(y-2x\right)\)

\(=3x\left(2x-y\right)-5y\left(2x-y\right)\)

\(=\left(3x-5y\right)\left(2x-y\right)\)

b) \(\left(x-5\right)^2-9\left(x+y\right)^2\)

\(=\left(x-5\right)^2-3^2\left(x+y\right)^2\)

\(=\left(x-5\right)^2-\left(3x+3y\right)^2\)

\(=\left(x-5+3x+3y\right)\left(x-5-3x-3y\right)\)

\(=\left(4x+3y-5\right)\left(-2x-3y-5\right)\)

25 tháng 10 2021

a: \(3x\left(2x-y\right)+5y\left(y-2x\right)=\left(2x-y\right)\left(3x-5y\right)\)

e: \(x^2-10x+24=\left(x-4\right)\left(x-6\right)\)

NV
10 tháng 10 2020

a/

\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)

\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)

Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm

b/

\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)

Pt vô nghiệm

NV
10 tháng 10 2020

c/

\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)

Vậy pt vô nghiệm

d/

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Do x;y;z nguyên dương nên vế phái luôn dương

Pt vô nghiệm

8 tháng 7 2018

a) \(A=x^2-20x+101\)

\(=x^2-2.x.10+10^2+1\)

\(=\left(x-10\right)^2+1\ge1\forall x\)

Dấu = xảy ra khi \(\left(x-10\right)^2=0\)

=> \(x-10=0\)

=> \(x=10\)

Vậy A min = 1 tại x = 10

b) \(B=4a^2+4a+2\)

\(=\left(2a\right)^2+2.2a.1+1^2+1\)

\(=\left(2a+1\right)^2+1\ge1\forall x\)

Dấu = xảy ra khi \(\left(2x+1\right)^2=0\)

=> \(2x+1=0\)

=> \(2x=-1\)

=> \(x=\frac{-1}{2}\)

Vậy B min = 1 tại \(x=\frac{1}{2}\)

c) Mình không biết làm mong bạn thông cảm

d)\(D=x^2+2y^2-2xy-4y+5\)

\(=x^2-2xy+y^2+y^2-2.y.2+2^2+1\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\forall x\)

Dấu = xảy ra khi \(\hept{\begin{cases}\left(y-2\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}y-2=0\\x-y=0\end{cases}}\Rightarrow\hept{\begin{cases}y=2\\x-2=0\end{cases}}\hept{\begin{cases}y=2\\x=2\end{cases}}\)

Vậy D min = 1 tại x = y = 2

27 tháng 7 2016

B=[(x - 2)(x - 5)](x2– 7x - 10) 
= (x2- 7x + 10)(x2 - 7x - 10)
= (x2 - 7x)2- 102
= (x2 - 7x)2 - 100

=>(x2-7x)2\(\ge\) 100

GTNN = -100 \(\Rightarrow\) x2 - 7x = 0 \(\Leftrightarrow\) x(x-7) = 0 \(\Leftrightarrow\) x = 0 hoặc x = 7

27 tháng 7 2016

B = x2 - 4xy + 5y2 + 10x - 22y + 28 
= x2 - 4xy + 4y2+ y2+ 10(x-2y) + 28 
= (x - 2y)2+ 10(x-2y) + 25 + y2- 2y+ 1 + 2 
= (x-2y + 5)2 + (y-1)2 + 2\(\ge\) 2 
GTNN B = 2, khi y=1, x=-3

14 tháng 6 2018

Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)

\(-A=2x^2+y^2+2xy-3x-2y-2\)

\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)

\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)

Mà  \(\left(x+y-1\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-4\)

\(\Leftrightarrow A\le4\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

14 tháng 6 2018

Đặt  \(B=x^2-4xy+5y^2+10x-22y+27\)

\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)

\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)

\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

       \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy  \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)

\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)

b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)

\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)

c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)

\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)

 

20 tháng 1 2022

A