\(A=4x^2+9\)

\(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

dù là số âm hay số dương nhưng khi có mũ 2 (2) thì nó luôn luôn dương

A=4x2+9

A=(2x)2+32

B=25x2+10x+4

B=(5x)2+10x+22

B=(5x+2)2

C=4x2+6x+8

C=2(2x2+3x+4)

C=2(2x+2)2

6 tháng 10 2018

a) \(A=25x^2-10x+9\)

\(A=\left(5x\right)^2-2\cdot5x\cdot1+1^2+9\)

\(A=\left(5x-1\right)^2+9\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)

21 tháng 7 2018

a, (x+2)^2

b, (x-3)^2

c, (2x+3)^2

d, (3x-1)^2

e, (x+5)^2

g, (4x-1)^2

21 tháng 7 2018

a) x2 + 4x + 4 = ( x + 2 )2

b) x2 - 6x + 9 = (x-3)2

c) 4x2 + 12x +  9 = (2x)2 + 2.2x.3 + 3^2 = (2x + 3)2

d) 9x2 - 6x + 1 = (3x)2 - 2.3x.1 + 1^2 = (3x-1)2

e) x2 + 25 +10x = x2 + 2.x.5 + 52 = (x+5)2

g) 16x+1 - 8x = (4x)2 - 2.4x.1 + 1^2 = (4x-1)2

11 tháng 12 2018

Bài 2 :

a) Phân thức A xác định \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)

b) \(A=\left(\frac{1}{x-2}-\frac{1}{x+2}\right)\cdot\frac{x^2-4x+4}{4}\)

\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\left(\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)

\(A=\frac{x-2}{x+2}\)

c) Thay x = 4 ta có :

\(A=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}\)

Vậy.........

11 tháng 12 2018

\(4x^2y^3.\frac{2}{4}x^3y=4x^2y^3.\frac{1}{2}x^3y=2x^5y^4\)

\(\left(5x-2\right)\left(25x^2+10x+4\right)\)

\(=\left(5x-2\right)\left[\left(5x\right)^2+5x.2+2^2\right]\)

\(=\left(5x\right)^3-2^3\)

\(=125x^3-8\)

4 tháng 8 2018

a) \(a^2-2a+1=a^2-2\times a\times1+1^2=\left(a-1\right)^2\)
b) sửa lại đề thành \(1-4x+4x^2\)
\(1-4x+4x^2=1^2-2\times2x\times1+\left(2x\right)^2=\left(1-2x\right)^2\)
c) bạn xem lại đề câu C nha mik làm lun
d) \(25x^2-20xy+4y^2=\left(5x\right)^2-2\times5x\times2y+\left(2y\right)^2=\left(5x-2y\right)^2\)

4 tháng 8 2018

a) \(a^2-2a+1\)

\(=\left(a-1\right)^2\)

b) Sửa đề \(1-4x+4x^2\)

\(=\left(2x\right)^2-2.2x+1\)

\(=\left(2x-1\right)^2\)

c) \(a^2+9-6x\)

\(=a^2-2.x.3+3^2\)

\(=\left(a-3\right)^2\)

d) \(25x^2-20xy+4y^2\)

\(=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)

\(=\left(5x-2y\right)^2\)

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

7 tháng 10 2018

a)\(a^4+a^2+1=\left(a^2\right)^2+2a^2.1+1^2-a^2=\left(a^2+1\right)^2-a^2=\left(a^2+1+a\right)\left(a^2+1-a\right)\)

b)\(a^4+a^2-2=a^4-a^2+2a^2-2=a^2\left(a^2-1\right)+2\left(a^2-1\right)=\left(a^2+2\right)\left(a^2-1\right)\)

c)\(x^4+4x^2-5=x^4-x^2+5x^2-5=x^2\left(x^2-1\right)+5\left(x^2-1\right)=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)

d)\(\left(x+2\right)\left(x^2-2x-6\right)=x^3-2x^2-6x+2x^2-4x-12=x^3-10x-12\)

\(\Rightarrow x^3-10x-12=\left(x+2\right)\left(x^2-2x-6\right)\)

e)\(6x^3-17x^2+14x-3\)

Ta có: \(\left(ax^2+bx+c\right)\left(dx+e\right)\)

\(=adx^3+aex^2+bdx^2+bex+cdx+ce\)

\(=adx^3+\left(ae+bd\right)x^2+\left(be+cd\right)x+ce\)

Do đó:\(\left\{{}\begin{matrix}ad=6\\ae+bd=-17\\be+cd=14\\ce=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3;b=-4\\c=1;d=2\\e=-3\end{matrix}\right.\)

Suy ra: \(6x^3-17x^2+14x-3=\left(3x^2-4x+1\right)\left(2x-3\right)\)

7 tháng 10 2018

h)\(x^4-34x^2+225=x^4-15x^2-15x^2+225-4x^2=x^2\left(x^2-15\right)-15\left(x^2-15\right)-\left(2x\right)^2=\left(x^2-15\right)^2-\left(2x\right)^2=\left(x^2+2x-15\right)\left(x^2-2x-15\right)=\left(x^2-3x+5x-15\right)\left(x^2+5x-3x-15\right)=\left[\left(x-3\right)\left(x+5\right)\right]^2\)

16 tháng 8 2020

Đây mình trả lời với x là số thực.

1) x^2 - 6x + 10 = (x^2 - 6x + 9) + 1 = (x - 3)^2 + 1. >= 0 + 1 = 1. (Số chính phương luôn >= 0 với mọi x).

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 3.

2) x^2 - 8x + 19 = (x^2 - 8x + 16) + 3 = (x - 4)^2 + 3 >= 0 + 3 = 3.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 4.

3) 3x^2 - 6x + 5 = (3x^2 - 6x + 3) + 2 = 3.(x - 1)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = 1.

4) x^2 + x + 1 = (x^2 + x + 1/4) + 3/4 = (x + 1/2)^2 + 3/4 >= 0 + 3/4 = 3/4.

Vậy GTNN của biểu thức trên là 3/4. Dấu "=" xảy ra <=> x = -1/2.

5) x^2 + 10x + 27 = (x^2 + 10x + 25) + 2 = (x + 5)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = -5.

6) 4x^2 + 4x + 2 = (4x^2 + 4x + 1) + 1 = (2x + 1)^2 + 1 >= 0 + 1 = 1.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = -1/2.

7) 16x^2 + 16x + 25 = (16x^2 + 16x + 4) + 21 = 4.(2x + 1)^2 + 21 >= 0 + 21 = 21.

Vậy GTNN của biểu thức trên là 21. Dấu "=" xảy ra <=> x = -1/2.

8) 9x^2 - 12x + 5 = (9x^2 - 12x + 4) + 1 = (3x - 2)^2 + 1 >= 0 + 1 = 1.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 2/3.

9) 49x^2 - 28x + 7 = (49x^2 - 28x + 4) + 3 = (7x - 2)^2 + 3 >= 0 + 3 = 3.

Vậy GTNN của biểu thức là 3. Dấu "=" xảy ra <=> x = 2/7.

10) 30 - 6x + x^2 = (x^2 - 6x + 9) + 21 = (x - 3)^2 + 21 >= 0 + 21 = 21.

Vậy GTNN của biểu thức là 21. Dấu "=" xảy ra <=> x = 3.

11) (1/4).x^2 + x + 3 = ((1/4).x + x + 1) + 2 = ((1/2).x + 1)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức là 2. Dấu "=" xảy ra <=> x = -2.

Lần sau nếu như đề bài yêu cầu tìm GTNN của 1 biểu thức thì bạn tìm xem biểu thức đó >= bao nhiêu nhé, và giá trị đó sẽ là GTNN của biểu thức đã cho. Còn nếu như đề bài yêu cầu tìm GTLN của 1 biểu thức thì bạn làm ngược lại.

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )

17 tháng 12 2019

a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)

\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)

\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)

\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)

\(=\frac{2x-7-5+3x}{10x-4}\)

\(=\frac{5x-12}{10x-4}\)