K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Bài 1:

a) \(A=\left[-2\left(m+1\right)\right]^2-4\left(m-4\right)\)

\(A=\left(-2\right)^2\left(m+1\right)^2-4m+16\)

\(A=4\left(m^2+2m+1\right)-4m+16\)

\(A=4m^2+8m+4-4m+16\)

\(A=4m^2+4m+20\)

\(A=\left(2m\right)^2+2.m.2+4+16\)

\(A=\left(2m+2\right)^2+16\)

\(\left(2m+2\right)^2\ge0\) với mọi m

\(\Rightarrow\left(2m+2\right)^2+16\ge16\)

\(16>0\)

\(\Rightarrow\left(2m+2\right)^2+16>0\)

\(\Rightarrow\left[-2\left(m+1\right)\right]^2-4\left(m-4\right)>0\) ( Đpcm )

b) \(B=\left[-\left(m+2\right)\right]^2-4.2m\)

\(B=\left(-1\right)^2\left(m+2\right)^2-8m\)

\(B=m^2+2m.2+4-8m\)

\(B=m^2+4m+4-8m\)

\(B=m^2-4m+4\)

\(B=m^2-2.m.2+2^2\)

\(B=\left(m-2\right)^2\)

\(\left(m-2\right)^2\ge0\) với mọi m

\(\Rightarrow\left[-\left(m+2\right)\right]^2-4.2m\ge0\) ( Đpcm )

c) \(C=\left(m+1\right)^2-4.2.\left[-\left(m+3\right)\right]\)

\(C=m^2+2m+1-8\left(-m-3\right)\)

\(C=m^2+2m+1+8m+24\)

\(C=m^2+10m+25\)

\(C=\left(m+5\right)^2\)

\(\left(m+5\right)^2\ge0\) với mọi m

\(\Rightarrow\left(m+1\right)^2-4.2\left[-\left(m+3\right)\right]\ge0\) ( Đpcm )

2 tháng 8 2018

Cảm ơn n` nhá yeu

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

a)

\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)

\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)

\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)

\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)

b)

Xét hiệu

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)

\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)

Dấu "=" xảy ra khi $x=y$

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

c)

Xét hiệu:

\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)

\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)

\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)

\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)

Dấu "=" xảy ra khi \(ad=bc\)

d)

Xét hiệu:

\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)

\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)

\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)

\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

8 tháng 4 2018

a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)

\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)

\(\Leftrightarrow-10x^2>5\)

\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)

Vậy bất phương trình đã cho vô nghiệm.

8 tháng 4 2018

h)

\(\dfrac{x+5}{x+7}-1>0\)

\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)

\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)

\(\Leftrightarrow\dfrac{-2}{x+7}>0\)

\(\Leftrightarrow x+7< 0\)

\(\Leftrightarrow x< -7\)

g)

\(\dfrac{4-x}{3x+5}\ge0\)

* TH1:

\(4-x\ge0\)\(3x+5>0\)

\(\Leftrightarrow x\le4\)\(x>\dfrac{-5}{3}\)

* TH2:

\(4-x\le0\)\(3x+5< 0\)

\(\Leftrightarrow x\ge4\)\(x< \dfrac{-5}{3}\) ( loại)

Vậy: \(-\dfrac{5}{3}< x\le4\)

NV
17 tháng 6 2020

a/ \(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

b/ \(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

c/ \(\Leftrightarrow a^2+2a< a^2+2a+1\)

\(\Leftrightarrow0< 1\) (hiển nhiên đúng)

d/ \(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(m=n=1\)

e/ \(\Leftrightarrow1+\frac{a}{b}+\frac{b}{a}+1\ge4\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

21 tháng 12 2016

mơn em iu nhìu nhắm nak.

21 tháng 12 2016

shit ~ pate tăng động -_-

19 tháng 8 2018

1. a) Ta có: x4 \(\ge\) 0 và x2 \(\ge\) 0 (với mọi x ∈ R)nên suy ra x4+x2+2\(\ge\)0 (với mọi x \(\in\) R)

Vậy giá trị của biểu thức A luôn có giá trị dương với mọi x \(\in\) R.

b) Ta có: B = (x + 3).(x - 11) + 2018 = x2-11x+3x-33+2018

\(\Leftrightarrow\)
B = x2-8x+1985 = x2-2.4.x+42+1969

\(\Leftrightarrow\) B = (x-4)2+1969

Vì (x-4)2\(\ge\) 0 nên suy ra (x-4)2+1969 \(\ge\) 1969

Vậy giá trị của biểu thức B luôn có giá trị dương với mọi x \(\in\) R.

Bài 2: 

a: \(=x^2+3x+\dfrac{9}{4}+\dfrac{19}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}>=\dfrac{19}{4}\)

Dấu '=' xảy ra khi x=-3/2

b: \(=-\left(x^2+10x-11\right)\)

\(=-\left(x^2+10x+25-36\right)\)

\(=-\left(x+5\right)^2+36< =36\)

Dấu = xảy ra khi x=-5

c: \(=2\left|x-4\right|-\left|x-4\right|^2\)

\(=-\left(\left|x-4\right|^2-2\left|x-4\right|+1\right)+1\)

\(=-\left(\left|x-4\right|-1\right)^2+1< =1\)

Dấu '=' xảy ra khi x-4=1 hoặc x-4=-1

=>x=3 hoặc x=5

22 tháng 11 2017

5)

a)

Có 3x+y = 1

\(\Rightarrow x+x+x+y=1\)

Áp dụng bất đẳng thức bunhiacopxki ta có :

\(\left(x^2+x^2+x^2+y^2\right)\left(1^2+1^2+1^2+1^2\right)\ge\left(x+x+x+y\right)^2\)

\(\Rightarrow3x^2+y^{2^{ }}.4\ge\left(3x+y\right)^2\)

\(\Rightarrow3x^2+y^2\ge\dfrac{1}{4}\)

b)

Áp dụng bất đẳng thức AM - GM ta có :

\(\left[{}\begin{matrix}a^2+1^2\ge2a\\b^2+1^2\ge2b\\c^2+1^2\ge2c\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(a+1\right)^2\ge4a^{ }\\\left(b+1\right)^2\ge4b^{ }\\\left(c+1\right)^2\ge4c^{ }\end{matrix}\right.\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a^{ }.4b.4c^{ }\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64a^{ }bc^{ }\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64abc\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64\)

\(\Rightarrow\left(a+1\right)^{ }\left(b+1\right)^{ }\left(c+1\right)^{ }\ge8\) \(\left(đpcm\right)\)

22 tháng 11 2017

3)

Sửa đề \(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)

Đặt b + c - a = x , a+c-b = y , a+b-c= z

\(\Rightarrow\left[{}\begin{matrix}2a=y+z\\2b=x+z\\2c=x+y\end{matrix}\right.\)

Có :

\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)

\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)

\(\Rightarrow\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)

\(\Rightarrow\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)

Áp dụng bất đẳng thức \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\forall a,b>0\)

\(\Rightarrow\) \(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\ge6\)

\(\Rightarrow2\left(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\right)\ge6\)

\(\Rightarrow\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\) \(\left(đpcm\right)\)

a: \(\Leftrightarrow x^2+x+4x+4+m-4⋮x+1\)

=>m-4=0

hay m=4

b: \(\Leftrightarrow2x^2+4x-x-2+m+2⋮x+2\)

=>m+2=0

hay m=-2

c: \(\Leftrightarrow x^4-x^3+5x^2+x^2-x+5+m-5⋮x^2-x+5\)

=>m-5=0

hay m=5

13 tháng 6 2019

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)